ALAGAPPA UNIVERSITY

[Accredited with ‘A+> Grade by NAAC (CGPA:3.64) in the Third Cycle
and Graded as Category—I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI - 630 003

Directorate of Distance Education

M.Sc. [Mathematics]

I - Semester
311 11

ALGEBRA -1



Reviewer

Dr. M. Mullai Assistant Professor
Alagappa University, Karaikudi

Authors:

Vijay K Khanna & S K Bhambri, Formerly Associate Professors, Department of Mathematics, Kirori Mal College, University of Delhi
Units (1-10, 11.0-11.1, 11.3-11.8,12.0-12.2, 13-14)

Surjeet Singh, Former Professor, King Saud University, Riyadh, Saudi Arabia

Qazi Zameeruddin, Formerly Lecturer, Department of Mathematics, Kirori Mal College, University of Delhi
Units (11.2, 12.3)

"The copyright shall be vested with Alagappa University"

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any

implied warranties or merchantability or fithess for any particular use.

VIKAS®
Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT.LTD.

E-28, Sector-8, Noida - 201301 (UP)

Phone: 0120-4078900  Fax: 0120-4078999

Regd. Office: 7361, Ravindra Mansion, Ram Nagar, New Delhi 110 055

* Website: www.vikaspublishing.com e Email: helpline@vikaspublishing.com

Work Order No. AU/DDE/DE1-621/Printing of Course Materials/2019, dated 09.12.2019 Copies 200



SYLLABI-BOOK MAPPING TABLE

Algebra - 1

Syllabi

Mapping in Book

BLOCKI: GROUPSAND NORMALSUBGROUPS

UNIT-1

Set Theory - Mappings - The Integers - problems

UNIT-1I

Group Theory - Definition of a group - Some examples of Groups
- Some preliminary Lemmas - Subgroups

UNIT-1II

A counting principle - Normal subgroups and Quotient groups
UNIT-1V

Homomorphisms - Automorphisms - Cayley's Theorem -
Permutation Groups

Unit 1: Set Theory

(Pages 1-22);

Unit 2: Group Theory
(Pages 23-45);

Unit 3: A Counting Principle
(Pages 46-62);

Unit 4: Cayley’s Theorem
(Pages 63-85)

BLOCKII: SYLOW’STHEOREM AND RINGTHEORY
UNIT-V

Another counting Principle - Application - Related problems
UNIT-VI

Sylow’s Theorem - Direct products - Problems

UNIT-VII

Finite Abelian Groups - Supplementary problems

UNIT-VIII

Ring Theory: Definition and examples of rings - Some special
classes of Rings

Unit 5: Another Counting Principle
(Pages 86-100);

Unit 6: Sylow’s Theorem

(Pages 101-129);

Unit 7: Finite Abelian Groups
(Pages 130-146);

Unit 8: Ring Theory

(Pages 147-162)

BLOCKIII: RINGHOMOMORPHISM, IDEALSAND FIELDS
UNIT-IX

Ring Homomorphisms - Ideals and Quotient Rings - Problems
UNIT-X

More ideals and Quotient Rings - Related Problems

UNIT-XI

The field of quotients of an Integral Domain - Euclidean Rings -
Related Problems

Unit 9: Ideals, Quotient Rings,

Ring Homomorphism

(Pages 163-182);

Unit 10: More Ideals Rings

(Pages 183-201);

Unit 11: The Field of Quotients of an
Integral Domain and Euclidean Rings
(Pages 202-225)

BLOCKIV: EUCLIDEAN RINGAND POLYNOMIALRING
UNIT-XII

A Particular Euclidean Ring - Polynomial Rings

UNIT-XIII

Polynomials over the Rational Field - Related Problems
UNIT-XIV

Polynomial Rings over Commutative Rings - Supplementary
Problems

Unit 12: A Particular

Euclidean Ring

(Pages 226-235)

Unit 13: Polynomials Over

the Rational Field

(Pages 236-251);

Unit 14: Polynomial Rings Over
Commutative Rings

(Pages 252-264)




CONTENTS

INTRODUCTION

BLOCK I:

UNIT1 SET THEORY

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Introduction

Objectives

Set Theory

Mapping

The Integers - Problems

Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises
Further Readings

UNIT 2 GROUPTHEORY

2.0
2.1
22
23
24
2.5
2.6
2.7
2.8
29
2.10

Introduction

Objectives

Definition of a Group

Some Examples of Groups

Some Preliminary Lemmas

Subgroups

Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises
Further Readings

UNIT 3 A COUNTING PRINCIPLE

3.0
3.1
32
33
34
3.5
3.6
3.7
3.8
3.9

Introduction

Objectives

A Counting Principle

Normal Subgroups

Quotient Groups

Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises
Further Readings

UNIT 4 CAYLEY’S THEOREM

4.0
4.1
4.2
43

Introduction
Objectives
Homomorphisms
Automorphisms

GROUPS AND NORMAL SUBGROUPS

1-22

23-45

46-62

63-85



44
4.5
4.6
4.7
4.8
4.9
4.10

BLOCKII:

Permutation Groups

Cayley’s Theorem

Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises
Further Readings

UNIT 5 ANOTHER COUNTING PRINCIPLE

5.0
5.1
52
53
5.4
5.5
5.6
5.7
5.8
59

Introduction

Objectives

Another Counting Principle

Application and Related Problems

Related Problems

Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises
Further Readings

UNIT 6 SYLOW’S THEOREM

6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Introduction

Objectives

Sylow's Theorem

Direct Products

Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises
Further Readings

UNIT 7  FINITE ABELIAN GROUPS

7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7

Introduction

Objectives

Finite Abelian Groups and Supplementary Problems
Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises

Further Readings

UNIT8 RINGTHEORY

8.0
8.1
8.2
83
8.4

Introduction

Objectives

Definitions and Examples of Rings

Some Special Classes of Rings

Answers to Check Your Progress Questions

SYLOW’S THEOREM AND RING THEORY

86-100

101-129

130-146

147-162



8.5 Summary

8.6 Key Words

8.7 Self Assessment Questions and Exercises
8.8 Further Readings

BLOCK III: RING HOMOMORPHISM, IDEALS AND FIELDS
UNIT 9 IDEALS, QUOTIENT RINGS, RING HOMOMORPHISM

9.0 Introduction

9.1 Objectives

9.2 Ideals

9.3 Quotient Rings

9.4 Ring Homomorphisms

9.5 Answers to Check Your Progress Questions
9.6 Summary

9.7 Key Words

9.8 Self Assessment Questions and Exercises
9.9 Further Readings

UNIT 10 MORE IDEALS RINGS

10.0 Introduction

10.1 Objectives

10.2 More Ideals Rings

10.3 More Quotient Rings and Related Problems
10.4 Answers to Check Your Progress Questions
10.5 Summary

10.6 Key Words

10.7 Self Assessment Questions and Exercises
10.8 Further Readings

UNIT 11 THE FIELD OF QUOTIENTS OF AN INTEGRAL
DOMAIN AND EUCLIDEAN RINGS

11.0 Introduction

11.1 Objectives

11.2 Field of Quotients of An Integral Domain
11.3 Euclidean Rings

11.4 Answers to Check Your Progress Questions
11.5 Summary

11.6 Key Words

11.7 Self Assessment Questions and Exercises
11.8 Further Readings

BLOCK1V: EUCLIDEAN RING AND POLYNOMIAL RING
UNIT 12 A PARTICULAR EUCLIDEAN RING

12.0 Introduction
12.1 Objectives

163-182

183-201

202-225

226-235



12.2
12.3
124
12.5
12.6
12.7
12.8

A particular Euclidean Ring

Polynomial Rings

Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises
Further Readings

UNIT 13 POLYNOMIALS OVER THE RATIONAL FIELD

13.0
13.1
13.2
133
134
13.5
13.6
13.7
13.8
13.9

Introduction

Objectives

Polynomials Over the Rational Field

Unique Factorization Domains

Related Problems

Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises
Further Readings

UNIT 14 POLYNOMIAL RINGS OVER COMMUTATIVE RINGS

14.0
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Introduction

Objectives

Polynomial Rings Over Commutative Rings
Supplementary Problems

Answers to Check Your Progress Questions
Summary

Key Words

Self Assessment Questions and Exercises
Further Readings

236-251

252-264



Introduction

NOTES

Self-Instructional
Material

INTRODUCTION

Algebra is a branch of mathematics dealing with symbols and the rules for
manipulating those symbols. In elementary algebra, those symbols represent
quantities without fixed values, known as variables. Just as sentences describe
relationships between specific words, in algebra, equations describe relationships
between variables. Building a solid conceptual understanding of algebra is absolutely
fundamental.

This book, Algebra 1, is divided into four blocks which have been further
sub-divided into fourteen units. The first block comprising four units covers the
topics like Groups and Normal Subgroups. The second block comprising four
units deals with Sylow’s Theorem and Ring Theory. Third block included Ring
Homomorphism, Ideals and Fields. Euclidean Ring and Polynomial Ring are the
subject areas of fourth block. Different concepts have been explained with the
help of examples. A large number of problems with solutions have been provided
to assist one get a firm grip on the ideas developed. There is plenty of scope for
the reader to try and solve problems on his own. In all, a substantial variety of
challenges (and rewards) is assured.

The book follows the self-instructional mode wherein each unit begins with
an Introduction to the topic. The Objectives of units are then outlined before going
on to the presentation of the detailed content in a simple and structured format.
Check Your Progress questions are provided to test the student’s understanding
of the subject. A Summary, a list of Key Words and a set of Self- Assessment
Questions and Exercises are provided at the end of each unit for recapitulation.



BLOCK -1
GROUPS AND NORMAL SUBGROUPS

UNIT 1 SET THEORY

Structure

1.0 Introduction

1.1 Objectives

1.2 Set Theory

1.3 Mapping

1.4 The Integers - Problems

1.5 Answers to Check Your Progress Questions
1.6 Summary

1.7 Key Words

1.8 Self Assessment Questions and Exercises
1.9 Further Readings

1.0 INTRODUCTION

In this unit, you will be acquainted with some basic concepts in mathematics. The
unit explains the concepts of sets along with operations in sets and then goes on to
define the all-important notion of a mapping/function, which finally leads you to the
results of number theory.

1.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand the basics of set theory
e [earn the operations in sets
e Know about mapping
e Discuss number theory

e Solve related problems

1.2 SET THEORY

The notion of a set is most fundamental in Mathematics, but it is not our endeavour
in this text to enter into the axiomatic study of set theory. We’ll, instead, borrow
the word ‘set’ from the language and be content to refer to it as a collection of
objects. To give it a more precise shape, by a set, we will mean a collection of

Set Theory
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objects such that given any object, it is possible to ascertain whether that object
belongs to the given collection or not. For instance, we can talk of set of all natural
numbers, set of all students in a particular class, etc. If x is an element (member)
of a set 4 we say x belongs to 4 and express it as x € 4. If y is not a member
of 4 we say y does not belong to 4 and write y ¢ A. We shall use capital letters
A, B, X, Y etc. for denoting sets and small letters, a, b, ¢, x, y etc. for the elements
(or members or objects).

Two sets 4 and B are said to be equal if they contain precisely the same elements
and we write 4 = B.

A set can be described in various ways. For example, if 4 is the set containing
1,2,3,4,5, 6, we can write it as

A=1{1,2,3,4,5,6}

A={xe N|x<6}

where N is set of all natural numbers. The last notation reading as: those x in the
set of natural numbers which satisfy the property that x <6.

We do not repeat any element while writing the elements in a set. Again, the
order in which the elements are written is immaterial. Thus {1, 2,3} and {2, 1,
3} mean the same set.

A set having no element is called an empty set or a null set or a void set. It
is denoted by @ or ¢. Obviously any two empty sets are equal. A set will be
called finite if either it is empty or has finite number of elements, i.e., the elements
can be listed by natural numbers such that the process of listing stops after a
certain definite stage. A set with infinite number of elements is referred to as an
infinite set.

The set {1, 2, 3, ..., 1000} is a finite set, whereas the set of all integers is
infinite. Again the set of all rational numbers whose square is 2 is an empty set.

We use the notation o(S) or | § | to mean the number of elements in the set S
and read it as order of S (sometimes also called its cardinality).

Subsets

We say a set 4 is contained in a set B (in symbols 4 < B) if every element of 4
isin B. A4 is then called subset of B and B is called superset of 4. If in addition
to this there is at least one element in B which is not in 4, we say 4 is strictly
contained in B (4 < B) and call 4 a proper subset of B. A ¢ B means 4 is not
a subset of B. Also A — B and B © A mean the same.

Itis clearthen 4 = Bifand onlyif Ac Band Bc 4. Also,Ac A, pc A4
for any set A4.

Definition: By union of two sets 4 and B, we mean the set 4 U B which contains
all the elements of 4 as well as B. Thus 4 U B= {x|x € A or x € B (orboth)}.



By intersection of two sets 4 and B, we mean the set A N B which contains
all the elements of 4 and B. Thus 4 "B = {x|x € A and x € B}.

The difference of two sets A and B is defined to be the set
A-B={x|xeAd, x¢ B}.

In case B — 4, then 4 — B is called the complement of B in A4. If there is no
confusion regarding the set 4, complement of B in 4 is denoted by B'.

Example 1: Let 4= {1,2,3}, B=1{3,4,5, 6}
Then AN B={3}
AuB=1{1,2,3,4,5, 6}
A-B=1{1,2}
Theorem 1: If 4, B, C are sets then the following results hold:
@) ANnA=4 AuAd=4
@ Ane=¢, AVp=4
(@) AnB=BnNA4A, AVB=BuUAd, AnNBCcAcCcAUB
vy An BN CO)=AnNnBnNnC AvBul)=(AuB)uC
VAN BuO)=AnB)uAnNO)
Vi) Ao BN O)=AuB)n(du0)

Proof: We will prove (v), and leave others for the reader to try as an exercise.

Let x e An (B U C) be any element.

Then xeAadxe BuC
= xe€eAdAandx € B or x € C.

If xeB, thenasxe 4, xe ANnB

If xeC, thenasx e A, xe An C.

ie. xeANB or xe An C  (orboth, of course)
=>xedAnB)uAdnO
=>ANnBul)c@nB)uAnl) .. (D)

Again, yveAnB)uAnC)

=>yednBoryednC

= yed and B or ye Aand C

=>yed and ye B or C

=>yed and ye BUC

=>yedn(BuUl)

> ANnB)uAnC)cAn(BuUl) -(2)
(1) and (2) give us the result.
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Theorem 2: (DeMorgan's laws). For sets A, B in a set X,
@) X-(AuB)=X-A)NX-B) or (AuB)=4" NP
@) X—(AnNnB)=X-A)UX-B) or AnB)=4"UB
Proof: (i) Letx € X— (4 U B) be any element.
Then xeX x¢gAUB
=>xelX, x¢d x¢B
> xeX-A4,xeX-B
=>xeX-A)NKX-B)
= X- (AuBcX-A)nNnX-B)
Again yeX-A4A)nNnX-B)
> yeX-4, and ye X—-B
=>yeX,yegdand yelX, yeB
=>yeXand ye AUB
=>yeX-(A4UB)
> X-ANnX-B)cX-(AuUB)
(1) & (2) give us the result.

(1) Prove similarly.

(1)

(2)

Definition: Given two elements a, b of a set of X, we define the ordered pair
(a, b)tobetheset {{a}, {a, b}}.ais called the first component (or first co-

ordinate) and b is called the second component (or second co-ordinate).
We show (a, b)=(c, d) <& a=c, b=d
If a = ¢, b = d then the result is obvious.
Conversely, (a, b) = (c, d)
= {{a}, {a, b}} = {{c}, {c, d}}
Since the two sets are equal, they contain same elements.
Thus, {a} = {c} or {a} ={c, d}
If {a} = {c}, then {a, b} = {c, d}
= a=c and b=d(asa=c)
Again, if {a} = {c, d} then {a, b} = {c}

= a=c¢ a=d, a=c, b=c
= a=c=b=d
= a=c¢ b=d

Hence the result follows.

We thus notice, the order in which the elements are written is important in as
much as (a, b) is not same as (b, a) unless a = b, whereas, of course, the two

sets {a, b} and {b, a} are same.



Relations

Definition: Given two sets 4 and B, the cartesian product 4 x Bis defined by

Ax B={(a, b) laed be B}. Thus it is the set of all ordered pairs of
elements from 4 and B.

Asanexample,if 4 = {1,2}, B=1{3,4,5}, then
AxB = {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)}
Also,then BxA4 = {3, 1), 3,2, 4 1), 4,2), (5 1), (5,2)}

thus 4 X B may not equal B X A4.

One can, of course, talk of 4 x 4, which we also write as 4°. Similarly, we
can talk of 43, 4* and so on. In fact, 4" = {(ay, ay, ...,a,) | a, € A}, the set of
all n-tuples (a,, a,, ..., a,), a; € A.

Any subset of 4 x B is called a (binary) relation from 4 to B, e.g.,
R = {(1, 3), (1, 4, (1, 5)}
R, = {(1, 3)}, Ry =12, 3), (1, 5)}
are all relations from A4 to B.
A relation from 4 to A4 is called a relation in A (or on A).

If Ris arelation from A to B and (a, b) € R, then we also express this fact by
writing aRb and say a is R-related to b.

If R, is arelation from 4 to B and R, is a relation from C to D then R, and R,
are said to be equal if 4 = C, B =D and aR\b < aR,b, a € A, b € B.

Let now, 4 be a non empty set. A relation R in 4 is called
Reflexive: if (a, a) € Rforalla € 4
Symmetric: if whenever (a, b) € R then (b, a) € R
Anti-Symmetric: if (¢, b)) e R, (b,a) e R = a=b
Transitive: if whenever (a, b), (b, c) € Rthen (a,c) € R
Arelation R is called an equivalence relation if it is reflexive, symmetric and
transitive.
Arelation R on a set 4 is called a partial order relation, if it is reflexive, anti-
symmetric and transitive.
Example 2: If 4= {1, 2, 3} then
R=1{(1,1), (2,2), (3,3), (1, 3)} is reflexive
R,={(1,1), (2,2)} is not reflexive
Ry=1{(1,2), (2, 1)} is symmetric but not reflexive

R,=1{(1, 1), (1, 2)} is neither reflexive nor symmetric, but is
transitive.
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Example 3: Let 4 be the set of all lines in a plane. Let R < 4 X 4 where
R={(,m)|l,m e A, 1| m} then R is
Reflexive: as(l,/) e R foralll e 4
asl||! forallle 4

Symmetric: asif ([,m) € R then /| m

= ml|!

= (m,l) e R
Transitive:  as if (I, m) e R, (m, n) € R

then /|| m, m || n
= Il|n= (, n)eR
Thus relation of parallelism is an equivalence relation.
Equivalence Classes
Let X'be a non-empty set and let ~ be an equivalence relation on X. For any a
€ X, we define equivalence class of a by
cllay={xe X | X ~a}

i.e., equivalence class of a contains all those members of X, which are related to
aunder the relation ~. The following theorem gives us certain important properties
of equivalence classes.

Theorem 3: Let ~ be an equivalence relation on a non-empty set X. Then for
anya, b € X

(i) clla) # ¢
(i) Either cl(a) M cl(b) = ¢ or cl(a) = cl(b)

i.e., two equivalence classes are either equal or have no element in common.
(@ii) X= v cl(a)
aeX

Proof: (i) Since a ~ a, by reflexivity
a € cl(a), ..cla)#+o.
(i) Let cl(a) M cl(b) # ¢

Then 3 some x € cl(a) N cl(b)
= xecla) & xeclb)
> x~a & x~b
> a~x & x~b
= a~b.

Now if y € cl(a) be any element

theny ~aandasa~bwefindy~b



= y e cl(b)
thus cl(a) c cl(b)
Similarly cl(b) c cl(a)
Hence cl(a) = cl(b).

(iii) Clearly any element x € X will be in at least one class, namely c/(x) and hence

isamemberof U cl(a).

aeX

Again, if te Y cl(a) then t € cl(x) forsome xand as cl(x) c X, t e X

Showing that X equals the union of all equivalence classes of X.

Definition: Let X be a non-empty set. Let K = set of non-empty subsets of X
such that every two distinct members of K are disjoint, then K is called a partition
of X, if X' equals the union of all members of K.

In view of this definition, we can say that if X be a non-empty set, with an
equivalence relation defined on it, then the set of all equivalence classes of X

partitions the set X.

1.3 MAPPING

Let A and B be two non-empty sets. A relation ffrom A4 to B is called a mapping
(or a map or a function) from 4 to B if foreacha € 4, 3 aunique b € Bs.t.,
(a, b) € f(and in that case we write b = fla) and b is called image of a under
fand a is called pre-image of b under f). We express this by writingf: 4 — B.

Thus mapping is that relation from A to B in which each member of 4 is related
to some member of B and no member of 4 is related to more than one member
of B, although more than one member of 4 can be related to the same member
of B. 4 is called the domain of f'and B is called the co-domain of f. A mapping

f: A — Ais also sometimes called a transformation of the set 4.

The subset of B which contains only those members which have pre images in
A is called range of f.

One can, of course, have more than one mapping from 4 to B.

A mapping f: 4 — B is called one—one (1-1) or injective mapping, if
S =fy) = x=y

orif x #y = fix) =y

Thus under one—one mapping all members of 4 are related to different members
of B.

A mappingf: A — Bis called onto or surjective mapping, if range of fequals
B, i.e., each member of B has a preimage under f.

Set Theory

NOTES

Self-Instructional
Material 7



Set Theory

NOTES

Self-Instructional
8 Material

A map which is both 1-1 and onto is sometimes referred to as a one-to-one
correspondence or a bijective map.

To check whether amap f: A — B is well defined or not, we need verify that
x =y = fix) = fy).
Example 4: Let N = set of natural numbers. Define amap f: N — N s.t., each

a € N is connected to its square. Since each natural number has a unique square
in N itself, we find fwill be a well-defined mapping. We express this by writing

f:N-> N, s.t.,
fix) =x* forallx e N
We notice that in the notation of our definition
=41, 1, 2, 4, 3, 9), 4,16),.....}
= {(x, ¥°) | x e N}
Example 5: For any set 4, the mapping /: 4 — A4, s.t.,
fix)y=x forallx € 4

is called the identity map. It is trivially a well defined one-one map. It is also
onto.

Example 6: If Z = set of integers, thenthe map f: Z — Z, s.t.,
fix) = 2x

is 1-1 but not onto. fix) =fy) = 2x=2y = x=y
But 1 € Z has no pre image.
Example 7: The mapf: N — {1}, s.t,,

fix)y=1 forallx e N
where N = set of naturals is onto map but not 1-1.
Equality of Mappings
Two mappings fand g from A to B should be equal if they ‘behave’ exactly in
the same way. We formalise this in

Theorem 4: Two maps f: A — B and g : A — B are equal if f(x) = g(x)
for all x € A.

Proof: Let f=g.
Let a € A be any element and let f{a) = b.
then (a, b) e f= (a,b) € g
= b=g(a)
or that f{x) = g(x) for all x.
Conversely, let fla) = g(a) foralla € 4

Let x € f'be any element, then x = (a, f(a)) for some a € A.



Since fla)=g(a), x=(a,gla) eg
ie., x e f= xeg

or that fcg

Similarly, gcf

and hence f=g

Definition: Let /: 4 — B be a mapping and suppose C and D are subsets of
A and B respectively, s.t., fix) € D for all x € C. We say f induces the map
g: C— Dwhere g(x)=f(x) for all x € C and in that case g is called a restriction

of 1.
Composition of Mappings

Letf: 4 —» Band g : B— C be two mappings.
We define a mapping (to be denoted by gof) from 4 to C by the rule
gof(x) = g(f(x)) forallx € 4
That it is well defined is confirmed by the fact that
X=y
= flv) = )
= g(fx)) = g())
= (gof)x = (gof)y
One can, of course, extend this idea to more than two mappings.
Remark: gof'is also denoted by gf.

Theorem S: If f: A — B and g : B — C are one-one (onto) mappings then
so is gof.
Proof: Let fand g be one-one

Since (gof) x = (gof) vy
= g(flx)) = g(f)
= flx) =Ay) [asgis 1 —1]
= x=y [as fis 1 — 1]

We find gof is one-one.

Again, if f, g are onto, and ¢ € C be any element, then 3 b € Bs.t., g(b) =
c

(g being onto). Again, for this b € B, 3 some a € 4s.t.,
fla) = b as fis onto
Now (gof) a = g(f (a)) = g(b) = ¢
Hence gofis onto.

The converse of the above theorem does not hold (see exercises).
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Theorem 6: A map fis invertible iff it is one-one onto.

Remark: If g is a mapping such that gofis identity map, then g is called left
inverse of /. Similarly, one can define right inverse of /-

Iff: X — X'has both right and left inverses then it is easily seen that the two
are equal.

Problem 1: Let X be a non empty set. Show that f: X — X is one-one iff f
has a left inverse.

Solution: Suppose fis one-one.
Let x, € X be any fixed element
Defineg: X —> X, s.t.,
gx)y=yifdye Xst, fy)=x
= X, otherwise.

Suppose g(x) =y and g(x) =)', then f(y) = x and f)') = x, i.e., Ay) =)
= y=y"as fis 1-1 and so y is uniquely determined. Thus g: X —> X is well
defined mapping.

Since gof(y) = g( f(y)) = g(x) =y, Vy € X, gis left inverse of /.
Conversely, let g be a left inverse of f

Let  flx)) = flx,)

Then x, = (gof)x, = g(f(x,)) = g(f(x,)) = (gof)x, = x, or that f'is 1-1.
Remark: One can show that fis onto iff it has a right inverse.

Definition: Let /: 4 — B be a function. Let X < 4 then we define f{X) = {f
(%) | x € X}, which is, of course, a subset of B, it is called image of X.

Again, if Y Bthenf ' (Y)={a e 4 ‘f(a) € Y}, which is a subset of 4.
(f ' here is only a notation and not essentially the inverse function). It is called
pre-image of Y.

Theorem 7: Let f: X — Y be a function then
() 4,c 4, = fl4)) c fi4,)
(i) fld, © 4,) = fi4)) Y f(4,)
(iil) fid, O Ay) € fidy) O fidy)
(@) £~ (B, U B =f'(B) U f(B,)
) £\ (B, " By =f'(B) " f\(B,)
(vi) By B,= ['(B)) = '(By)
where A,, A, are subsets of X and B,, B, are subsets of Y.
Proof: We leave it for the reader to try.
Theorem 8: Iff: A —> B, g:B—>C, h:C— D bemaps then

(@) ho(gof) = (hog)of



@) Ifi:A—> A, j:B — B be identity maps then
foi = fand jof = f
Proof: (i) ho(gof) and (hog)of are both maps from 4 — D
Since for any x € 4
[(hog)of] x = (hog)(f(x)) = h (gfix)))
[ho(gof)] x = h(gof)x) = h (g(fix)))
h((gof)x) = (ho(gof))x
we get result (7).
(1) Since foi and f are both maps from 4 — B and also for any x € 4
(foi)x = f(i(x)) = f(x), we find foi = f
Again, jof and f are maps from 4 — B and for any x € 4
(of)x = j(fix)) = fix)
= jof = f
Cor.: If f: A — A be any mapping and i : A — A4 be identity map, then foi =
iof =f.

1.4 THE INTEGERS - PROBLEMS

In this section we discuss a few results pertaining to numbers although we do not
plan to go through their axiomatic construction.

Definition: A non zero integer a is said to divide an integer b if b = ac for some
integer ¢ and we express it as a | .

The following results can then be proved
@) alb, blc thenalec
(@) alb, alc thenalb+c
(iii) a
We now prove a well known result through
Theorem 9: (Euclid’s Algorithm)

Let k> 0 be an integer and j be any integer. Then 3 unique integers q and
r such that j = kq + r, where 0 <r < k.

O,a‘a

Proof: Let S = {j—kq‘qis an integer, j — kg > 0}.
Then S # o, as take g = — |]|
Now whenj > 0,thenj—kq=j+ki>0=j—-kgeS
and if j <0, thenj — kg=j — kj

=j(l-k=0

=j—kqeS
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j=0,then j—kq=j - kO
=j=0
=j—kqgeS
In any case, S # .
By well ordering principle, S has least element, say » € S.
r € § = r=j— kq for some integer ¢
=j=kq+r.Alsor=>0
Suppose >k
Then j—kq =k
= j—k(@+1)=0
= j-k(@+1)eS

But j—k(qg+1)<j—kgas k>0, contradicting » =j — kq is least element of
S.

L0 r<k

Uniqueness: Suppose j=kq +r=kq' ++',0<r, ¥ <k. Then k(q — q") =
r' —r. Suppose 7' > r. Then r'— r > 0. But k|r'—r= k<r—r. Since r,r <
k, ¥'—r <k, a contradiction.

>/ r.Similarly r>/ ¥ cor=v = kg=kq' = q=¢'.
An important application of this result is the basis representation theorem.
Theorem 10: (Basis Representation Theorem).

Let b > 0 be an integer and let N > 1 be any integer. Then N can be
expressed as

N=a,b"+a P+ L+ a,b + a,,

where m and as are integers such that m > 0 and 0 < a, < b. Also then these
a;s are uniquely determined. (b is called base of representation of N).

Proof: If N<b,
then N=0b"+0b""'+.+0b+N
is the representation of NV as required.
Let N> b > 0. By Euclid’s algorithm 3 integers g, » such that
N=bg+r, 0<r<b<N
Since N—r>0, bg>0= g>0asbh>0.

m—1

If g <b, then N = bq + r is the required representation of .

If g=b>0, then as above by Euclid’s algorithm 3 integers g,, 7, such that
q=bg,+r, 0<r,<b<g

Since ¢ —r,>0, bg,>0= ¢g,>0asb>0.



Now N=bg+r=>bbg +r)+r Set Theory
= N=b2q1+br1+r
If g, < b, then it is the required representation of N. In this way, after finite
number of steps, we shall get NOTES
N=a,b" +am_1bm_] + ... ta,b +a,
where a/s are integers such that
0<aq<b foralli=1,.,m.
Uniqueness of a;s follows as:

Suppose N=c¢, b" +c, , Pty L+ ¢, b+ ¢, where each c;is an integer
such that 0 < ¢, < b. We can choose same m in both the representations of N
because if one representation of N has lesser terms we can always insert zero
coefficients and thus make the number of terms to be same.

0=(a,—c)b"+ ..+ (a,—c)b+(a,—c,)

Let a,—c,=d.
Then db"+ .. +db+d,=0.
We have to show thatd,=0 forall i.

Suppose for some i, d;# 0. Let k be the least subscript such that d, # 0
Then dp+d b+ +d pm=0

= dbp* = d b+ .. +d,p")
= d,=d,b+d b+ .. +dbp" "
= d,=—b(d,,, +d,b+ .. +d b
= bld,
= bl ld,]
= b< \dk|

But a,, c,<b= |ak—ck‘<b

= | d, |<b,
So, we get a contradiction
d=0 foralli=1,.,m
S a,=c, foralli=1,.,m
Note: When the integer N is expressed as
N=ab"+ .. +ab+a, 0<a <b,
wewrite N =(a,a, |..aa,)b
and say that Nis a,a, , ... a,to the base b.
For example,
132 = 1.10*+3.10 + 2 (Here base is 10)

Self-Instructional
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Then as above

132 = (132),,

So, numbers that we usually write are to the base 10.

Again, if we want to write 132 to the base 2, we first write
132=2"+22=2"4020+02°+02*+02°+1.22+02+0

and by basis representation theorem, then

132 = (10000100),

Problem 11: If a, b are integers with b # 0, show that there exist unique

integersqandrsatisfyingaqu+rwhere—%‘b‘<r£% 5]

Solution: By Euclid’s algorithm, there exist unique integers ¢', 7’such that

azq"b‘ + 7, where 0 <7 < b

(as |b|>0whenb¢0).
Case 1: 0< /' < L1 [b]

r=r,q=qfb>0), ¢ =— (1fb<0)

Take

Since

Also

and

where

Case 2:
Take

Now

Also

f%|b|<0£r’=r£%‘b

1
2

2

b <r<1]p]

1
2

a=4q' |b |+ becomes

a=qgb+r ifb>0
a=(—q) (-b)+r ifb<0
=qgb+r

~1lbl<r<ilp|

6] <# < |b]

¥ =r+|b]
qg=q-1 1itb>0
=—q-1ifb<0

Llbl<r =r+|bl
= — L|bl<r
r=r+ |b|<|b|

= r<0<1/p|

[bl<r< 1ol

1
2



Again a= bl q+r becomes
a=blg-1)+r+b when b > 0
=bg+tr

Also, when b>0,a = 5] q'+ r' becomes
a=-b(—g-1)+r-»>
=bg+r

where — 1 [b|<r<1]p].

The Greatest Common Divisor
A special case in Euclid’s algorithm arises when the remainder is zero. We discuss
it in this section.

Definition: An integer d> 0 is called greatest common divisor (g.c.d.) of two
integers a, b (non zero) if

G) dla, d|b
(i) Ifcla, c|b then c|d
We write d = g.c.d.(a, b) or simply d = (a, b).
Remarks:
) (a, 0)=lal, 0, b)=1[b|
Clearly, a‘ a, a| ‘0
Ifcla, then ¢l lal= (a, 0)= |a

Similarly (0, b)= | 5|

(ii) Ifalb, then (a, b)= |al
|a| a, and a|b = |a| |b
Ifcla, cl|b, then c‘ ‘a‘

- (a, b)=|al

(iii) g.c.d. of @ and b does not depend on signs of @ and b
ie, (a, by=(—a, b)=(a,—b)=(-a,-b)
Letd = (a, b). Then dl|a, d|b= d|l-a, d |b
a, ¢ ‘ b= ¢ ‘ d

c | -a, ¢ ‘ b= ¢
.. d=(-a, b). Similarly for others.
We now show the existence and uniqueness of g.c.d. of integers a and b.

Theorem 11: Let a, b be two integers. Suppose either a =0 or b # 0.
Then 3 greatest common divisor d of a, b such that

d = ax + by for some integers x, y.

d is uniquely determined by a and b.
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Proof: Let S = {au + bv
Ifa>0, then a=a.l1+b0>0= a el
Ifa<0, then -a=a(-1)+b0>0= —a € S.

Similarly, if 5> 0 then b € S and i1f b <0 then—b € S. Since one of a and b
1s non zero, either +a € S or £b € §. In any case S # .

u, v are integers and au + bv > 0}.

By well ordering principle S has a least element, say d.

Now d € § = d = ax + by for some integers x and y. Also d > 0.
Leta=dg+r, 0<r<d.

Letr#0. Sincer =a—dgq

=a— (ax + by)g
=a(l —xq) + b(-yq) > 0
= reld.

But r < d, contradicting the fact that d is least element of S. So, » = 0.

Therefore, a=dqg = dla.
Similarly, d|b.
Suppose, cla, clb= c‘ax+by=d.

So, d is a greatest common divisor of @ and b.

If d' is also greatest common divisor of @ and b, then d' |a, d' | b, = d ‘ d
Similarly,d | a,d|b=> d'|d.Sinced,d >0,d=d'. So dis uniquely determined
by a and b.

Definition: If g.c.d.(a, ) =1, then a and b are said to be relatively prime or
coprime.

Cor: Two integers a, b are relatively prime if and only if 3 integers x, y such that
ax + by = 1.

Proof: Suppose a, b are relatively prime. Then g.c.d.(a, b) =1. By above
theorem 3 integers x, y such that ax + by = 1.

Conversely, let ax + by =1 for some integers x, y. Letd =g.c.d.(a, b). Then
dla,d|b=>d|ax,d|by =>d|ax+by=1= d=1.

So, a, b arerelatively prime.

Definition: The least common multiple of two non zero integers a and b, denoted
by l.c.m.(a, b)is the positive integer m s.t.,

@) a | m, b | m
(@) ifalc, b
Theorem 12: For positive integers a and b
g.c.d.(a, b) x L.c.m.(a, b) = ab
Proof: Let d = g.c.d.(a, b)

¢, with ¢ > 0, then m ‘ c.



Also

ab ab b . .
—=a.— = a|— as— Isinteger
d d d d

ab_p @ pl® 4% s integer
d d d d

Leth%b,thena|mandb‘m

Suppose now a

=

¢, b | c. Since (a, b) = d, 3 integers x, y s.t., d = ax + by.

_cd _clax+by) _ (%)x + [g)y = integer

£
m ab ab

mlc.

Thus m = Le.m. (a, b), ie., ‘;—b ~lem. (a, b)

or that ab = g.c.d. (a, b) x l.c.m. (a, b).
Problem 2: Let g.c.d. (a, b)=1.

Show that g.c.d.(a+ b, a®>—ab+ b*) =1 or 3.
Solution: Let g.c.d.(a + b, a*>—ab+b*) =d

Then

Let
Then
So,

Similarly,

U

dla+b, dla®—ab+ b
d|(a+bP=a*+b*+2ab, d|a*— ab + b

d|3ab

gcd.(d, a)=e

eldla+b = ela+b andela
e‘(a+b)—a=b

elged(a b)=1= e=1
gcd(d, a)=1

gcd.(d, b)=1

d|3= d=1or3.

Prime Numbers

Aninteger p > 1 is called a prime number if 1 and p are the only divisors of p.

Theorem 13: If a prime number p divides ab, then either p divides a or p

divides b.

Proof: Let ab = pc for some integer c.

Suppose p does not divide a.

Then

gcd.(a, p)=1

Set Theory
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p | ab and gcd.(a, p)=1
= p‘b

Composite Numbers

A composite number is an integer n > 1 such that » is not prime.
Problem 3: Prove that if 2" — 1 is prime, then n is prime.
Solution: Let 2" — 1 = p = prime.
Let n be not prime.
Thenn=rs, 1 <r,s<n
p=2"-1
=2"-1=(2"-1
=x'-1,x=2">2asr>1
=x-DE T+ +x+ D)
Bither x — 1 =Torx '+ .. +x+1=1
x—1=1= x =2, whichisnottrue
and ¥ '+ . +x+1=1
=X+ . +x=0, which is not true
n 1S prime.

Congruences

Leta, b, ¢, (c>0)be integers. We say a is congruent to » modulo c if ¢ divides
a — b and we write this as @ = b (mod c). This relation ‘=’ on the set of integers
1s an equivalence relation as seen earlier.

Addition, subtraction and multiplication in congruences behave naturally.
Let a=b (mod c)
a,= b, (mod c) = c|a—b, c|a1—b1
= ¢l (@a+a)—(b+b)
= a+a,=b+ b, (mod c)
Smilarly a —a,=b - b, (mod c)
Also cla—b, c|a1—b1
= c‘aal—bal, c"bal—bb1
= c¢|(aa, - ba)) + (ba, - bb,)
= ¢ aa, — bb,

= aa,=bb, (mod ¢)




We may, however, not be able to achieve the above result in case of division.

Indeed < or b may not even be integers.
q

Again, cancellation in congruences in general may not hold.

ie., ad = bd (mod c) need not essentially imply
a=>b (mod c)
For example, 2.2 =2.1 (mod 2)
but 2 =/1 (mod 2)
However, cancellation holds if g.c.d.(d, ¢)=1.
ie., if ad =/ bd (mod c)
and gcd.(d,c)=1
then a=b (mod ¢).
Proof: ad = bd (mod c¢)
= clad - bd
= ¢|d(a-b)

— cla—bas gcd.(c,d)=1

= a=b (mod c).
Problem 4: [f a = b (mod n), prove that g.c.d.(a, n) = (b, n).
Solution: Let d = g.c.d.(a, n)

Then dla, d‘n.Butn‘a—b
dla-b, dla
= dla-(@-b)=b
dlb, dln
Let clb, c|n :>cb,c‘a—basn|a—b
:>c|a—b+b=a
= cla, cln

= cldasd= g.cd.(a, n)
= g.c.d.(b, n)=d

Problem 5: Find the remainder obtained by dividing 1! +2! + 3! + 41 + .

+ 100! by 12.
Solution: Each number 4! onwards is a multiple of 12.
ST+ 21+30+4+ 0+ 1000 =11+ 2+ 31+ 0+ ...+ 0 (mod 12)
= 11+21+3!+4!+ ...+ 100! =9 (mod 12)

= 9is the required remainder.
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oS S

. What is an empty set?
. What is an equivalence relation?
. What is injective mapping?

. State Euclid's theorem.

Check Your Progress

1.5

ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A set having no element is called an empty set or a null set or a void set.

. Arelation R is called an equivalence relation if it is reflexive, symmetric and

transitive.

. Amappingf: A — B is called one—one (1-1) or injective mapping, if

f&) =fy) =x=y

. Let k=0 be an integer and j be any integer. Then 3 unique integers ¢ and

rsuch thatj=kq +r, where 0 =r < k.

1.6

SUMMARY

Ifx is an element (member) of a set 4 we say x belongs to 4 and express it
asx € 4. If yis not amember of 4 we say y does not belong to 4 and write
y & A.

Two sets 4 and B are said to be equal if they contain precisely the same
elements and we write A = B.

If 4 is the set containing 1, 2, 3,4, 5, 6, we can writeitas 4 = {1, 2, 3, 4,
5, 6}

A set having no element is called an empty set or a null set or a void set.

A set will be called finite if either it is empty or has finite number of elements.
A set with infinite number of elements is referred to as an infinite set.

o(S) or | § | denotes the number of elements in the set S and read it as order
of S (sometimes also called its cardinality).

If every element of A4 is in B then A is a subset of B and B is called superset
of A.

Union of two sets A and B, set A W B which contains all the elements of 4
as well as B.

Intersection of two sets 4 and B, set A N B which contains all the elements
of Aand B.



e Relation is the set of all ordered pairs of elements from set 4 and set B. Set Theory
o Arelation R is called an equivalence relation if it is reflexive, symmetric and

transitive.
e Mapping is that relation from A4 to B in which each member of 4 is related to NOTES

some member of B and no member of A is related to more than one member

of B, although more than one member of 4 can be related to the same
member of B. 4 is called the domain of fand B is called the co-domain of /.

e Ifk =0 be an integer and j be any integer. Then 3 unique integers g and r
such thatj=kq + r, where 0 = r < k.

e d=g.c.d.(a, b),dis greatest common divisor.

e Aninteger p> 1 is called a prime number if 1 and p are the only divisors of
p.

e A composite number is an integer n> 1 such that n is not prime.

e Leta, b, ¢, (c > 0) be integers. We say a is congruent to » modulo c if ¢

divides a — b and we write this as a =b (mod c¢). This relation ‘=" on the set
of integers is an equivalence relation.

1.7 KEY WORDS

e Cardinality: The number of elements in a set or other grouping, as a
property of that grouping.

e Equivalence: The condition of being equal or equivalent in value, worth,
function, etc.

¢ Domain: The set of possible values of the independent variable or variables
of a function.

e Co-domain: The codomain of a function is the set Y into which all of the
output of the function is constrained to fall. It is the set Y in the notation
f: X — Y. The codomain is also sometimes referred to as the range.

1.8 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. If 4, B, C are sets, then show that 4 U (BN C)=(A U B)N (AU )
2. Define Relations.
3. Forsets 4, B in a set X, show that

X-(AuB)=(X-A)NnX-B)or(AuB)=4"nFB
4. Define equivalence classes.

Self-Instructional
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Long Answer Questions

1. Show that the relation of equality on integers is an equivalence relation.

2. Let X'be a non-empty set. Show that f: X — X'is one-one iff fhas a left
inverse.

3. Provethatif 2 — 1 is prime, then 7 is prime.

4. Prove Basis Representation Theorem.
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UNIT 2 GROUP THEORY

Structure

2.0 Introduction

2.1 Objectives

2.2 Definition of a Group

2.3 Some Examples of Groups

2.4 Some Preliminary Lemmas

2.5 Subgroups

2.6 Answers to Check Your Progress Questions

2.7 Summary

2.8 Key Words

2.9 Self Assessment Questions and Exercises
2.10 Further Readings

2.0 INTRODUCTION

In this unit, you will study different algebraic structures or algebraic compositions,
which means a non-empty set with one or more binary compositions. The unit
starts with groups which occupy a very important seat in the study of abstracts of
algebra.

2.1 OBJECTIVES

After going through this unit, you will be able to:
e Define a Group
¢ Discuss some examples of Groups
e Learn preliminary lemmas

¢ Know about Subgroups

2.2 DEFINITION OF A GROUP

Definition: A non empty set G, together with a binary composition * (star) is
said to form a group, if it satisfies the following postulates

(1) Associativity:a * (b*c) =(a*b)*c, foralla,b,ce G
(it) Existence of Identity: Janelemente € G, s.t.,
a*e=e*a=a forallae G

(e 1s then called identity)
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(iii) Existence of Inverse: Foreverya € G,3 a' € G (depending upon a)
s.t.,

a*a =d *a=e
(a’ 1s then called inverse of a)

Remarks: (i) Since * is a binary composition on G, it is understood that for
all a, b € G, a* bis aunique member of G. This property is called closure
property.
(ii) If, in addition to the above postulates, G also satisfies the commutative
law
a*b=b*aq foralla,be G
then G is called an abelian group or a commutative group.

(iii) Generally, the binary composition for a group is denoted by ‘.’ (dot)
which is so convenient to write (and makes the axioms look so natural too).

If the set G is finite (i.e., has finite number of elements) it is called a finite
group otherwise, it is called an infinite group.

We shall always (unless stated otherwise) use the symbols e for identity of
a group and a ! for inverse of element a of the group.

Definition: By order of a group, we will mean the number of elements in the
group and shall denote it by o(G) or | G |.

2.3 SOME EXAMPLES OF GROUPS

Example 1: The set Z of integers forms an abelian group w.r.t. the usual addition
of integers.

It is easy to verify the postulates in the definition of a group as sum of two
integers is a unique integer (thus closure holds). Associativity of addition is known
tous. 0 (zero) will be identity and negatives will be the respective inverse elements.
Commutativity again being obvious.

Example 2: One can easily check, as in the previous example, that sets Q of
rationals, R of real numbers would also form abelian groups w.r.t. addition.

Example 3: Set of integers, w.r.t. usual multiplication does not form a group,
although closure, associativity, identity conditions hold.

Note 2 has no inverse w.r.t. multiplication as there does not exist any integer
ast,2.a=a2=1.

Example 4: The set G of all +ve irrational numbers together with 1 under

multiplication does not form a group as closure does not hold. Indeed /3 .+/3

=3 ¢ G, although one would notice that other conditions in the definition of a
group are satisfied here.



Example 5: Let G be the set {1, — 1}. Then it forms an abelian group under
multiplication. It is again easy to check the properties.

1 would be identity and each element is its own inverse.

Example 6: Set of all 2 x 2 matrices over integers under matrix addition would
be another example of an abelian group.

Example 7: Set of all non zero complex numbers forms a group under multiplication
defined by

(a +ib) (c +id) = (ac — bd) + i (ad + bc)
1 =1+i.0 will be identity,

a i b will be inverse of a + ib.

a’ +b° a’ +b*

Note a + ib non zero means that not both a & b are zero.
Thus @ + b% # 0.

Example 8: Let G = {£ 1, + i, + j, + k}. Define product on G by usual
multiplication together with

P=pP=k==1, ij=—ji=k
Jk=—ki=1i
ki=—ik=j
then G forms a group. G is not abelian as ij # ji.
This is called the Quaternion Group.
Example 9: Let G ={(a, b) | a, b rationals, a # 0}. Define * on G by
(a, b) * (c, d) = (ac, ad + b)
Closure follows asa,c#0 = ac# 0
[(a, D) * (c,d)] * (e, /) = (ac, ad + D) * (e, /)
= (ace, acf + ad + b)
(a,0) * [(c,d) * (e, )] =(a, b)* (ce, cf + d)
= (ace, acf + ad + b)
proves associativity.
(1, 0) will be identity and (1/a, — b/a) will be inverse of any element (a, b).
G is not abelian as
(1,2)*3,4)=3,4+2)=(3,6)
(3,4) *(1,2)=(3, 6 +4)=(3, 10).
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a

Example 10 (a): The set G of all 2 x 2 matrices of the form [ b] over reals,

c

where ad — bc # 0, i.e., with non zero determinant forms a non abelian group
under matrix multiplication.

It is called the general linear group of 2 x 2 matrices over reals and is
denoted by GL(2, R).

. |1 0 . . .
The matrix [0 1} will act as identity and

d -b

. d-b d—b ) . b
the matrix “ c ¢ will be inverse of [a d]'

—-C a c

ad —bc ad—bc

one can generalise and prove

(b) If G be the set of all n x n invertible matrices over reals, then G forms
a group under matrix multiplication.

(c) The set of 2 x 2 matrices over R with determinant value 1 forms a non
abelian group under matrix multiplication and is called the special linear group,
denoted by SL(2, R).

One can take any field (e.g., Q, C or Zp) in place of R in the above examples.

Example 11: Group of Residues : Let G= {0, 1,2, 3,4} . Define a composition
®; on Gbya ®, b= c where cis the least non —ve integer obtained as remainder
when a + b is divided by 5. For example. 3®,4 =2, 3®, 1 =4, etc. Then
®, is a binary composition on G (called addition modulo 5). It is easy to verify
that G forms a group under this.

One can generalise this result to
G=1{0,1,2,.,n-1}
under addition modulo » where 7 is any positive integer.

We thus notice

ja—i—b ifa+b<n

a® b= )
n la+b—n ifa+b=n

Also, in case there is no scope of confusion we drop the sub suffix » and
simply write @©. This group is generally denoted by Z, .
Example 12: Let G= {x € Z | 1 <x <n, x, n being co-prime} where Z =
set of integers and x, n being co-prime means H.C.F of x and n is 1.



We define a binary composition ® on G by a ® b = ¢ where c is the least Group Theory
+ve remainder obtained when a . b is divided by n. This composition ® is

called multiplication modulo 7.
We show G forms a group under ®. NOTES
Closure: Fora,b € G,leta ® b=c. Then c # 0, because otherwise n | ab

which is not possible as a, n and b, n are co-prime.
Thus ¢ # 0 and also then 1 < ¢ <n.
Now if ¢, n are not co-prime then 3 some prime no. p s.t., p|c and p|n.
Again as ab = nq + ¢ for some ¢
We get plab  [pln = plng, plc = plng + c]
= pla or p|b (as p is prime)
If pla then as p|n it means a, n are not co-prime.
But a, n are co-prime.
Similarly p|b leads to a contradiction.
Hence ¢, n are co-prime and thus ¢ € G, showing that closure holds.
Associativity: Let a, b, ¢ € G be any elements.
Leta®b=r,(a®b)@c=r ®c=r,
then r, is given by r,c = nq, + r,
Also a ® b = r, means
ab=gqn+r,
thus ab —qn=r,
= (ab —gqn)c=r,c=ng, +r,
= (ab)c =r, + nq, + nq,c = n(q,c +q,) +r,
or that r, is the least non-negative remainder got by dividing (ab)c by n.

Similarly, if a ® (b ® ¢) = r, then we can show that r is the least non —ve
remainder got by dividing a(bc) by n.

But since a(bc) = (ab)c, r, =1y

Hence a ® (b ® ¢) = (a ® b) ® c.

Existence of Identity: It is easy to see that
a®l1=1®a=a forallae G

or that 1 will act as identity.

Existence of Inverse: Let a € G be any element then a and n are co-prime
and thus we can find integers x and y s.t., ax + ny =1

By division algorithm, we can write

x=qn+r, where 0 <r<n
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= ax = aqn + ar
= ax t ny =aqn + ar + ny
= 1 =agn+ ar + ny

or that ar=1+ (-aq — y)n

i.e.,a®r=1.Similarly r ® a = 1. If r, n are co-prime, r will be inverse
of a.

If r, n are not co-prime, we can find a prime number p s.t.,p |7, p | n
= plgnandp|r
= plgn+r
= plx
= plax also p|ny
= plax+ny=1

which is not possible. Thus r, n are co-prime and so » € G and is the required
inverse of a.

Itis easy to see that G will be abelian. We denote this group by U, or U(n)
and call it the group of integers under multiplication modulo 7.

Remark: Suppose n = p, a prime, then since all the integers 1,2, 3, ..., p —
1 are co-prime to p, these will all be members of G. Again, one can show that

G'=12,4,6,..,2(p 1)}

where p > 2 is a prime forms an abelian group under multiplication modulo 2p.

2.4 SOME PRELIMINARY LEMMAS

Lemma: /n a group G,
(1) Identity element is unique.
(2) Inverse of each a € G is unique.
3) (@Y'=a, forall a € G, where a’! stands for inverse of a.
@) (@)'=b'la! foralla beG
(5) ab =ac = b =c
ba =ca = b=cforalla b,ce G
(called the cancellation laws).
Proof: (1) Suppose e and e’ are two elements of G which act as identity.
Then, since e € G and €' is identity,
ee =¢ee =e
and as ¢’ € G and e is identity

ee=¢ee =¢



The two => e=¢' Group Theory
which establishes the uniqueness of identity in a group.

(2) Leta € G be any element and let @’ and a"’ be two inverse elements of
a, then NOTES

aa' = a'a = e

aa’ = a''a = e
Now da' = de=a'(ad")=(a'a)a"’ =ea" =a".
Showing thereby that inverse of an element is unique. We shall denote
inverse of a by a”.

(3) Since a ! is inverse of a
aa'=ala=e
which also implies a is inverse of !
Thus (¢ ) ' =a.
(4) We have to prove that ab is inverse of b 'a™! for which we show

(ab) (b'a) = (b'a!) (ab) =e.

Now (ab) (b'a) = [(ab)b '] a’!

= [(a(bb ] a

= (@ae)a'=aa'=¢
Similarly (5"'a™!) (ab) = e

and thus the result follows.
(5) Let ab = ac, then
b = eb=(a'a)b
al(ab) =a! (ac)

(@'a)x=ec=c

Thus ab = ac=>b=c
which is called the left cancellation law.
One can similarly, prove the right cancellation law.

Theorem 1: For elements a, b in a group G, the equations ax = b and ya
= b have unique solutions for x and y in G.

Proof: Now ax =>
= al(ax)=a'b
= ex=a'b
or x=a'b

which is the required solution of the equation ax = b.
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Suppose x = x, and x = x, are two solutions of this equation, then
ax, = band ax, = b
= ax, = ax,
= x,=x, byleftcancellation
Showing that the solution is unique.
Similarly y = ba! will be unique solution of the equation ya = b.

Theorem 2: 4 non empty set G together with a binary composition .’ is
a group if and only if

(1) a(bc)=(ab)c foralla, b,c e G

(2) Foranya,b € G, the equations ax = b and ya = b have solutions
inG.
Proof: If G is a group, then (1) and (2) follow by definition and previous theorem.

Conversely, let (1) and (2) hold. To show G is a group, we need prove existence
of identity and inverse (for each element).

Let a € G be any element.
By (2) the equations ax = a
ya=a
have solutions in G.
Let x=e and y=f be the solutions.
Thusde,fe G, s.t.,ae =a
fa=a

Let now be G be any element then again by (2) 3 some x, y in G s.t.,

ax =0>b
ya = b.
Now ax=b = f(a.x)=f.b
= (f.a).x=f.b
= a.x=f.b
= b=f.b
Again va=b = (y.a).e=b.e
= y.(a.e)=b.e
= y.a=be
= b=be
thus we have b=fb ..(0)
b = be ..(iM)
for any beG



Putting b=e in (i) and b=f in (ii) we get

e=fe
f=re
= e=1.
Hence ae =a = fa=ea

ie,deecG,st., ae=ea=a
= eisidentity.

Again, for any a € G, and (the identity) e € G, the equations ax = e and
ya = e have solutions.

Let the solutionsbe x=a,,andy=a,

then aa,=e, a,a=e
Now a,=ea, = (a,a)a, = ay(aa,) = a,e = a,.
Hence aa,=e=aa foranyae G

i.e., foranya € G, 3 some a, € G satisfying the above relations = a has
an inverse. Thus each element has inverse and, by definition, G forms a group.

Remark: While proving the above theorem we have assumed that equations
of the type ax = b and ya = b have solutions in G. The result may fail, if only
one type of the above equations has solution.

Definition: A non empty set G together with a binary composition “.” is called
a semi-group if
a.(b.c)y=(a.b).c foralla,b,ce G

Obviously then every group is a semi-group. That the converse is not true
follows by considering the set N of natural numbers under addition.

Theorem 3: Cancellation laws may not hold in a semi-group.

Proof: Consider M the set of all 2 x 2 matrices over integers under matrix
multiplication, which forms a semi-group.

If we take AZF 0},82{0 0},C={0 0}
00 0 2 30

thenclearly AB=AC = B g}

But B=C.

Set of natural numbers under addition is an example of a semi-group
in which cancellation laws hold.

Theorem 4: A finite semi-group in which cancellation laws hold is a group.

Proof: Let G = {a,, a,, ..., a,} be a finite semi-group in which cancellation
laws hold.
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Let a € G be any element, then by closure property
aa,, aa,, ..., aa,

areallin G.

Suppose any two of these elements are equal

say, aa, = aa; for some i #j
then a,=a; by cancellation
But a;#a; asi#]

Hence no two of aa,, aa,, ..., aa, can be equal.
These being n in number, will be distinct members of G (Note o(G) = n).
Thus if b € G be any element then
b =aa, forsomei
i.e., for a, b € G the equation ax = b has a solution (x =@, in G.
Similarly, the equation ya=»5b will have a solution in G.
G being a semi-group, associativity holds in G.
Hence G is a group (by theorem 2).

Remark: The above theorem holds only in finite semi-groups. The semi-group
of natural numbers under addition being an example where cancellation laws
hold but which is not a group.

Theorem 5: A finite semi-group is a group if and only if it satisfies cancellation
laws.

Proof: Follows by previous theorem.

Definition: A non empty set G together with a binary composition ‘.’ is said
to form a monoid if

(@) a(bc)=(ab)c VY a b,ce G

(@) Janelemente € G s.t.,, ae=ea=a VaeG

e is then called identity of G. It is easy to see that e is unique.
So all groups are monoids and all monoids are semi-groups.

When we defined a group, we insisted that 3 an element e which acts both
as aright as well as a left identity and each element has both sided inverse. We
show now that it is not really essential and only one sided identity and the same
sided inverse for each element could also make the system a group.

Theorem 6: 4 system < G, . > forms a group if and only if
(@) a(bc)=(ab)c foralla, b,c e G
(@) JeeG,st,ae=a foralla e G
(iii) foralla € G,3a' € G, s.t.,aa’ =e.



Proof: If G is a group, we have nothing to prove as the result follows by definition.
Conversely, let the given conditions hold.

All we need show is that ea=aforalla € G

and aa=a foranyae G

Let a € G be any element.

By (iii) da" € G,st,aa" =e

. For a'eG, 3a" €, s.t., aa'"=e (using(iii))

Now a'a= a'(ae)=(a'a)e = (a'a)(a'a"")

= d'(aa")a"" = ad'(e)a"’ = (a'e)a’’ =ad'a" =e.
Thus foranya € G, 3 a' € G, st., aa’ =d'a=e
Again ea = (aa")a=a(d'a)=ae=a
ae=ea=a forallae G
i.e., eisidentity of G.

A Notation: Let G be a group with binary composition ‘.’. If @ € G be any
element then by closure property a . a € G. Similarly (a . a) . a € G and so
on.

It would be very convenient (and natural!) to denote @ . aby a*and a . (a . a)
or (a . a). a by a® and so on. Again ¢ '. a ! would be denoted by ¢>. And
since a . a”! = e, it would not be wrong to denote e = a°. It is now a simple
matter to understand that under our notation

m m+n

a.a" =a
(am)n = g""
where m, n are integers.

In case the binary composition of the group is denoted by +, we will talk of
sums and multiples in place of products and powers. Thus here 2a =a + a,
andna=a+a+...+a (ntimes), if n is a +ve integer. In case n is —ve integer
then n = — m, where m is +ve and we define na=—-ma=(—a) +(—a) + ...
+ (— a) m times.

Problem 1: If G is a finite group of order n then show that for any a € G,
3 some positive integer r, 1 <r <m, s.t., a’ = e.
Solution: Since o(G) = n, G has n elements.

Let a € G be any element. By closure property a®, @, ... all belong to G.

Consider e, a, d?, ..., d"

These are n + 1 elements (all in G). But G contains only n elements.

= at least two of these elements are equal. If any of a, a, ... d" equals e,
our result is proved. If not, then o' = & for some i, j, 1 <i,j <n. Without any
loss of generality, we can take i > j
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then a=d

=>d.al=d.a’

= ad7=e wherel<i—j<n.
Putting i —j = r gives us the required result.

Problem 2: Suppose (ab)" = a"b" for all a, b € G where n > 1 is a fixed
integer.

Show that(i) (ab)"' = b"'a"!
(i) a" prl = prlgn
(i) (aba b~V =¢ foralla, be G
Solution: (i) We have
[67'(ba)b]" = b'(ba)"b
and [b71(ba)b]" = (ab)"
(ab)" = b Y(ba)"b
= (ab)"'ab=b"'(b"a")b
= (ab)" ' =b"1a"!  foralla,be G

(if) Now (@ 'b'ab)" = a"b """
and (a'b'ab)" = a"(b'ab)"
=a"bla"b

a"b"a"b" = a"b'a"b
= """ = p"1g" foralla, b e G
(iif) Consider (aba™'b"y""=D
= [(aba by 7"
= [(ba” by ™" by (i)
= [ba " Dp a1 = [b(a "D g
= P(a " Dp gy = g D!
= a " Dp'p g™ by (if)
= e foralla, b € G.

2.5 SUBGROUPS

We have seen that R, the set of real numbers, forms a group under addition,
and Z, the set of integers, also forms a group under addition. Also Z is a subset
of R. It is one of the many situations which prompts us to make

Definition: A non empty subset A of a group G is said to be a subgroup of
G, if H forms a group under the binary composition of G.



Obviously, if H is a subgroup of G and K is a subgroup of H, then K is
subgroup of G.

If G is a group with identity element e then the subsets {e} and G are trivially
subgroups of G and we call them the #rivial subgroups. All other subgroups
will be called non-trivial (or proper subgroups).

Thus it is easy to see that the even integers form a subgroup of (Z, +), which
is a subgroup of (Q, +) which is a subgroup of (R, +).

Again the subset {1, —1} will be a subgroup of G = {1, —1, i, —i} under
multiplication.

Notice that Z, = {0, 1, 2, 3,4} mod 5 is not a subgroup of Z under addition
as addition modulo 5 is not the composition of Z. Similarly, Z, is nota subgroup
of Z etc.

We sometimes use the notation H < G to signify that H is a subgroup of G
and H < G to mean that H is a proper subgroup of G.

It may be a little cumbersome at times to check whether a given subset A
of a group G is a subgroup or not by having to check all the axioms in the
definition of a group. The following two theorems (especially the second one)
go a long way in simplifying this exercise.

Theorem 7: A non empty subset H of a group G is a subgroup of G iff
(@) a,be H=>abe H
() ac H=>a' e H.

Proof: Let H be a subgroup of G then by definition it follows that (7) and (i7)
hold.

Conversely, let the given conditions hold in H.
Closure holds in H by (7).
Again a,bce H=>a,b,c e G = a(bc)= (ab)c
Hence associativity holds in H.
Also for any a € H,a! € Hand so by (i)
aa'e H=>ec H
thus A has identity.
Inverse of each element of H is in H by (ii).

Hence H satisfies all conditions in the definition of a group and thus it forms a
group and therefore a subgroup of G.

Theorem 8: A non void subset H of a group G is a subgroup of G iff a,
be H=ab' e H.

Proof: If His a subgroup of G then, a, b € H=>ab ' € H (follows easily by
using definition).
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Conversely, let the given condition hold in H.
That associativity holds in H follows as in previous theorem.
Let a € H be any element (H # @)
thena,a e H=>aa' e H= e € H.
So H has identity.
Again, foranya € H,ase € H
ea'le H=>a'leH
i.e., Hhas inverse of each element.
Finally, for any a,b e H,
a, bl e H
= abY'eH=>abecH
i.e., H1is closed under multiplication.
Hence H forms a group and therefore a subgroup of G.

Remark: If the binary composition of the group is denoted by +, the above
condition would read as a, b € H = a — b € H. Note also that e is always
inH.

The following theorem may not prove to be very useful in as much as it
confines itselfto finite subsets only but nevertheless it has its importance.

Problem 3: Let G be the group of all 2x2 non singular matrices over the
reals. Find centre of G.

a

Solution: If { Z} be any element of the centre Z(G) of G then it should

c

commute with all members of G. In particular we should have

e e el

= b=c, a=d

Also [a b][l 0}2{1 O]{a b} gives
c dlll 1 1 1f|lc d

a+b b| |a b
c+d d a+c b+d
= atb=a, b=c=0

0
Hence any member {a S} of Z(G) turns out to be of the type B } .
C

a

In other words, members of the centre Z(G) are the 2x2 scalar matrices of G.



Problem 4: Let G be a group in which
(ab)® = &’b®
(ab)’ =a’b®, foralla,b e G
Show that G is abelian.
Solution: We first show that b*> € Z(G) forallb € G.
Weknow (a'ba)’ =a! b’a
By given condition (a'ba)’ =a73 (ba)’ = a> b’a?
= a!' ba=a3bd
= b =b3* foralla,be G
Similarly, (@' baY’=a'b’a
(a! ba)’ =a> ba’
a'l ba=a’ba’
a‘b’ = b’a* = a*p’b* = ba’
(@®? b’b? = b’a* = ba*b? = ba*
a*b? = b*a* = ad’b? = b*a*
ab’a® = b*a*
ab*=b*a foralla,b e G
h b* € Z(G) forallbe G
Now (ab)* = (ab)’ (ab)' = &’b’b7! a!

O I

= a°b*a’' = d’a’'b*, as b € Z(G) = a*b*

- (ab)' = a'b' for three consecutive integers i =3, 4, 5
So,ab=ba foralla, b € G, by problem done earlier.
Hence G is abelian.
Problem 5: Show that N(x' ax) = x! N(a)x for all a, x € G
Solution: Let y € N(x ! ax)
then (xlax)y =y (x! ax)

1 1

= y’1 X axy =x  ax

1 1

= xy‘1 X a= axy_1 X

= xy ' x! e Ma)

= xy ' x1=b e Na)
y !l =x1bx

= y=x"'b"1x, b' € N(a) as beN(a)

= y e x ! Na)x

N ax) < x7! N(a) x
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Group Theory Let zex ' Nax = z=x"cx, c € Na)
z(x ! ax) = (@ ex) (¢! ax)
= x! cax
NOTES = xacx asc e N)

= (! ax) (¢! ex)

= (! ax)z
= z € N(x! ax)
= x' Na)x < Nx" ax)
= x ' N(a)x=N(x"'ax) foralla x € G.

It would be an easy exercise to show that intersection of two subgroups will
be a subgroup. In fact, one can prove that if {#_|i € I} be any set of subgroups

of'a group G then o H; will be a subgroup of G.

Theorem 9: Union of two subgroups is a subgroup iff one of them is contained
in the other.

Proof: Let H, K be two subgroups of a group G and suppose H < K
then H U K = K which is a subgroup of G.

Conversely, let H, K be two subgroups of G s.t., H U K is also a subgroup
of G. We show one of them must be contained in the other. Suppose it is not
true, i.e.,

Hz K, Kz H

Then dxe H st, xg¢kK

dyeK st, yeH

Also thenx,y € H U K and since H U K is a subgroup, xy € H U K

= xyeHorxyek

Ifxy € H,thenasx € H,x ' (xy) € H=y € H, which is not true.

Again, ifxy € K, thenas y € K, (xy)y"! € K = x € K which is not true.

i.e., either way we land up with a contradiction.

Hence our supposition that H ¢ K and K ¢ H is wrong.
Thus one of the two is contained in the other.

Definition: Let H be a subgroup of a group G. For a, b € G, we say a is
congruent to b mod Hifab™! € H.

In notational form, we write a = b mod H.

It is easy to prove that this relation is an equivalence relation. Corresponding
to this equivalence relation, we get equivalence classes. For any a € G, the
equivalence class of a, we know will be given by
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clla)={x € G| x=amod H}.

Definition: Let H be a subgroup of G and let @ € G be any element.
Then Ha = {ha | h € H} is called a right coset of H in G.

We show in the following theorem that any right coset of Hin G is an equivalence
class. To be exact we state and prove:

Theorem 10: Ha = {x € G | x =a mod H} = cl(a) for any a € G.
Proof: Let x € Ha

Then x=ha forsomeh e H
= xa!=
= xa'eH
= x=amod H
= x € cl(a)
thus Ha c cl(a).
Again letx € cl(a) be any element.
Then x=amod H

= xa' e H
= xa'=h forsomeh e H
= x=ha € Ha

thus cl(a) c Ha

and hence Ha = cl(a).

Having established that right cosets are equivalence classes, we are free to
use the results that we know about equivalence classes. We can, therefore, say
now that any two right cosets are either equal or have no element in common
and also that union of all the right cosets of H in G will equal G.

Remark: Note that a coset is not essentially a subgroup. If G be the Quaternion
group then H = {1, — 1} is a subgroup of G. Take a =i, then Ha = {i, — i}
which is not a subgroup of G. (it doesn't contain identity). See theorem 15
ahead.

Lemma: There is always a 1 — 1 onto mapping between any two right
cosets of Hin G.

Proof: Let Ha, Hb be any two right cosets of H in G.
Defineamapping  f: Ha — Hb, s.t.,
f(ha) = hb
Then ha=ha = h =h, = hb=h,b
= f(ha)=f(hya)
i.e., fis well defined.

Group Theory

NOTES

Self-Instructional
Material

39



Group Theory

40

NOTES

Self-Instructional
Material

f(ha)=f(h,a)= hb=hb=h =h, = ha=h,a
Showing fis 1-1.
That fis onto, is easily seen, as for any hb € Hb, ha would be its pre image.

The immediate utility of this lemma is seen, if the group G happens to be
finite, because in that case the lemma asserts that any two right cosets of H in
G have the same number of elements. Since H = He is also a right coset of H
in G, this leads us to state that all right cosets of H in G have the same number
of elements as are in H (G, being, of course, finite). We are now ready to prove

Theorem 11 (Lagrange's): If G is a finite group and H is a subgroup of
G then o(H) divides o(G).

Proof: Let o(G) = n.

Since corresponding to each element in G, we can define a right coset of H
in G, the number of distinct right cosets of H in G is less than or equal to 7.

Using the properties of equivalence classes we know
G =Ha, Y Ha, v ... U Ha,
where ¢ = no. of distinct right cosets of Hin G.
= 0(G) = o(Ha,) + o(Ha,) + ... + o(Ha,)
(reminding ourselves that two right cosets are either equal or have no element

in common).

= o(G)=o(H)+o(Ha) +...+ o(H) usingthe above lemma

{ times
= o(G) =t. o(H)
or that o(H) | o(G)
and we have proved a very important theorem.
But a word of caution here. Converse of Lagrange's theorem does not hold.

Remarks: (1) If G is a group of prime order, it will have only two subgroups
G and {e}. See theorem 25 also.

(1) A subset H # G with more than half the elements of G cannot be a subgroup
of G.

We have been talking about right cosets of H in G all this time. Are there
left cosets also? The answer should be an obvious yes. After all we can similarly
talk of

aH= {ah |h € H}, foranya e G

which would be called a /eff coset. One can by defining similarly an equivalence
relation (a=b mod H < a' b € H) prove all similar results for left cosets.
It would indeed be an interesting ‘brushing up’ for the reader, by proving these
results independently.

We now come to a simple but very important



Theorem 12: Let H be a subgroup of G then
()Ha=H < aeH,aH=H < ae H
()Ha=Hb < ab' ¢ H, aH=bH < a'b e H

(iii) Ha (or aH) is a subgroup of G iff a € H.

Proof: (i) Let Ha=H

Sincee € H,ea € Ha = ea € H= a € H.
Let aeH, we show Ha = H.
Letx € Ha = x=ha forsomeh € H
NowheHacH=>hieH=>xcH=>HacH
Again, let yveH, sinceae H

ya‘l e H

= ya'=h forsomeh e H

= y=ha € Ha

= Hc Ha
Hence Ha = H.
() Ha = Hb
< (Ha)b™' = (Hb)b™!
< Hab™' = He
< Hab' = H

& ab ' e H using (i)

(iii) If a € H then Ha = H which is a subgroup. Conversely, if Ha is a
subgroup of G then e € Ha and thus the right cosets Ha and He have
one element e in common and hence Ha=He=H = a € Hby (i).

Corresponding results for left cosets can be tackled similarly.

Definition: Let G be a group and H, a subgroup of G. Then index of Hin G
is the number of distinct right (left) cosets of H'in G. It is denoted by i (H) or
[G:H]. (See Problem 15).

A look at the proof of Lagrange's theorem suggests that if G is a finite group,

then i ,(H) = Z((fl)) .

It is, of course, possible for an infinite group G to have a subgroup H #G
with finite index.

Example 13: Let < Z, + > be the group of integers under addition.

Let H= {3n|n € Z} then H is a subgroup of Z. We show H has only three
right cosets in Znamely 4, H+ 1, H + 2.
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If a € Z be any element (=0, 1, 2) then we can write (by division algorithm).
a=3n+r, 0<r<3
which gives
H+a=H+Q@Bn+r)y=H+3n)+r=H+r
where 0 < r <3
Hence H has only 3 right cosets in Z and thus has index 3.
Notice, H—-1=(H+3)-1=H+3-1)=H+ 2 etc.
Definition: Let H be a subgroup of a group G, we define
C(H)={x € G|xh=hx for all h € H} then C(H) is called centralizer of H
inG.
Also the set
NH)= {x € G | xH = Hx}
= {xeG|xHx'=H
is called normalizer of Hin G.

It is an easy exercise to see that both C(H) and N(H) are subgroups of G.
See problems ahead.

Againas x € C(H) = xh=hx forallhe H

= xH = Hx
= x € N(H)
we notice C(H) < N(H).

However, C(H) need not be equal to N(H) as consider the Quaternion group
G = {1, £i, 4/, =k} and let H = {1, £i}.

Then N(H) = G and C(H) = {*1, +i}.
Showing that C(H) = N(H)
Problem 6: Show that C(H) = G < H < Z(G).

Solution: Let C(H) = G. Let h € Hbe any element. Thenx € G = x € C(H)
= xh=hx = anyelement / in H commutes with all elements of G = & €
Z(G) = H < Z(G).

Conversely, let Hc Z(G). Letx € G. Since H < Z(G) each element of H
commutes with every element of G.

= xh=hx forallh e H
> xeCH) = Gc CH) = G=C(H).

Problem 17: If G = S, and H = {1, (13)}, write all the left cosets of H in
G

Solution: (12)H = {(12)1, (12)(13)} = {(12), (132)}
= (123)H (Show!)



(23)H = {(23)1, (23)(13)} = {(23), (132)} = (132)H
(13)H = H as(13) e H
IH=H

are all the left cosets of Hin G.

-

Check Your Progress

What is an abelian group?
Give an example of general linear group.

Is identity element unique in a group?

Define subgroup.

2.6

ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

.Afa*b=>b*aforall a, b € G then G is called an abelian group or a

commutative group.

[

Yes, Identity element is unique in a group.

A non-empty subset H of a group G is a subgroup of G iff
(Ya,be H=abe H (i)acH aleH

2.7

SUMMARY

A set G of elements, together with an associative binary operation, which
contains an inverse for each element and an identity element is called a

group.
Ifa*b=>b*aforall a,b € Gthen G is called an abelian group or a
commutative group.

The set Z of integers, set O of rational numbers and set R of real numbers
form an Abelian group w.r.t. addition.

G forms a group under a binary composition ® and this binary composition
on G is defined as a ® b = ¢ where c is the least +ve remainder obtained
when a . b 1s divided by n. This composition ® is called multiplication
modulo 7.

In a group G, Identity element is unique, inverse of each a € G is unique,

(a_l)_1 =aq, forall a € G, where a~ ! stands for inverse of a, (ab)_1 =b"

1,1 foralla, be Gab=ac=b=c; ba=ca b=cforalla b,cec G
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e Subgroup is a group whose members are all members of another group,
both being subject to the same operations.

e [f G is afinite group and H is a subgroup of G then o(H) divides o(G).

2.8

KEY WORDS

e Associativity: The associative property states that you can add or multiply
regardless of how the numbers are grouped.

e Identity: Anelement of a set which, if combined with another element by a

specified binary operation, leaves that element unchanged.

¢ Inverse: An element which, when combined with a given element in an

operation, produces the identity element for that operation.

¢ Binary composition: The successive application of functions to a variable,

the value of the first function being the argument of the second, and so on.

e Cosets: A set composed of all the products obtained by multiplying each

element of a subgroup in turn by one particular element of the group
containing the subgroup.

2.9

SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. Explain closure property of a Group.

2. Give some examples of Group.

3. Inagroup G, show that inverse of each a € G is unique.

4. Define the Centre of a group.

Lon

1.

g Answer Questions

IfG= {2 |r=0,£1,%2, ...} then show that G forms a group under usual
multiplication.

2. Show that a finite semi-group in which cancellation laws hold is a group.

3. Show that Centre of a group G is a subgroup of G.

4. Prove if G is a finite group and H is a subgroup of G then o(H) divides

o(G).
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UNIT 3 A COUNTING PRINCIPLE

Structure

3.0 Introduction

3.1 Objectives

3.2 A Counting Principle

3.3 Normal Subgroups

3.4 Quotient Groups

3.5 Answers to Check Your Progress Questions
3.6 Summary

3.7 Key Words

3.8 Self Assessment Questions and Exercises
3.9 Further Readings

3.0 INTRODUCTION

In this unit, you will learn about a counting principal in group theory, which is the
study of groups. Groups are sets equipped with an operation (like multiplication,
addition, or composition) that satisfies certain basic properties. As the building
blocks of abstract algebra, groups are so general and fundamental that they arise
in nearly every branch of mathematics and the sciences. This unit will introduce
you to the concepts of normal subgroups and quotients groups. A quotient group
or factor group is a mathematical group obtained by aggregating similar elements
ofalarger group using an equivalence relation that preserves the group structure.

3.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand the concept of counting principle
¢ Define normal subgroups

e Describe quotient groups

3.2 A COUNTING PRINCIPLE

Definition: Let H and K be two subgroups of a group G. We define
HK = {hk|h € H, k € K} then HK will be a non empty subset of G (Sometimes,
called the complex of H and K). Will it form a subgroup? The answer is provided by

Theorem 1: HK is a subgroup of G iff HK = KH.
Proof: Let HK be a subgroup of G. We show HK = KH
Let x € HK be any element



Then x' e HK (as HK is a subgroup)
= x'=hk forsomeh e H, ke K
= x=0("'=k"hn'! e KH

thus HK ¢ KH
Again let y € KH be any element
Then y=kh forsomeke K,he H

= y'=h'k'eHK
= y e HK (as HK is a subgroup)
= KH c HK

Hence HK = KH.
Conversely, let HK = KH.
Let a, b € HK be any two elements, we show ab™' € HK

a,b e HK = a=hk, forsomeh,h,eH
b = h,k, ky, k, e K

Then ab' = (hik)) (h,k) "' = (hk) (&5'm"
= (k") hy!

Now (k'Y m' € KH = HK

thus (kk;"Yhs' = hk  forsome h € H, k € K

Then ab™' = h,(hk) = (h )k € HK

Hence HK is a subgroup.

Remarks: (i) HK = KH does not mean that each element of / commutes with
every element of K. It only means that for each 7 € H, k € K, hk = k,h, for
some k, € Kand 7, € H.

(ii) If G has binary composition +, we define

H+K={h+k|heH,keK}.

Theorem 2: [f H and K are finite subgroups of a group G then

o(H).o(K)

o(HNK)

Proof: Let D=H N K then D is a subgroup of K and as in the proof of Lagrange's

theorem, 3 a decomposition of K into disjoint right cosets of D in K and
K = Dk, U Dk, U ... U Dk,

o(HK) =

oK)

and also t= o(D)
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t
Again, HK= H(u Dk;) and since D c H, HD=H
i=1

t
Thus HK = v Hk; = Hk, U Hk, U ... U Hk,

i=1
Now no two of Hk,, Hk,, ..., Hk, can be equal as if Hk, = Hk]. for some i, j
then kk;' € H= kk;' e HNK = kk;' € D= Dk, = Dk,
which is not true.
Hence o(HK)= o(Hk,) + (Hk,) + ... + o(Hk)
= o(H) +o(H) + ... + o(H)
= t.o(H)

_ o(H).o(K)
o(HNK)

which proves the result.

3.3 NORMAL SUBGROUPS

Definition: A subgroup H of a group G is called a normal subgroup of G if Ha
=aHforalla € G

A normal subgroup is also called invariant or self conjugate subgroup.

Clearly G and {e} are normal subgroups of G and are referred to as the trivial
normal subgroups. A group G # {e} is called a simple group if the only normal
subgroups of G are {e} and G. Any group of prime order is simple.

It is easy to see that if H is a normal subgroup of G and K is a subgroup of
Gs.t.,, HC K < Gthen Hisnormal in K. Again, if G is abelian, all its subgroups

will be normal. We use the notation H < G to convey that H is normal in G.

Example 1: /= {1,—1} is anormal subgroup of the Quaternion group G. Indeed
Ha = {a,—a} =aH forany a € G

The following two theorems give us equivalent conditions under which a subgroup
of'a group is normal. So one could also take any one of these as definition of a
normal subgroup.

Theorem 3: A subgroup H of a group G is normal in G iff g 'Hg = H for
allg € G.

Proof : Let Hbe normal in G
then Hg=gH forallge G

= g'Hg=g ' (gH)=(g'9) H=H.



Conversely, let g'Hg=H forallge G
Then g(g'Hg) = gH

= (gg )Hg = gH

= Hg=gH.
Hence H is normal.

Theorem 4: A subgroup H of a group G is normal in G iff g 'hg € H for
allh e H,g € G.

Proof: Let H be normal in G, then
Ha=aH foralla e G
Leth € H, g € G be any elements, then
hg € Hg=gH
= hg=gh, forsomeh e H
= glhg = h, e H
which proves the result.
Conversely, let a € G be any element,
then a 'haeH forallhe H
= a(a'ha) € aH forallh e H
= haeaH forallhe H
= Ha c aH
Taking b=a ', we note, as b € G
b'hbeHheH
= aha' e H forallh e H
= (aha “)a € Ha forallh € H
= ah € Ha forallh e H
= aH c Ha.
Hence Ha = aH, showing H is normal.

Remark: Evidently, it makes no difference in the argument if the above condition
isread as ghg ' € H forallh e H, g € G.

The next theorem also gives us an equivalent condition for a subgroup to be
normal, but the importance of this theorem is much more in as much as it helps
us to form what would be known as Quotient groups. The very statement of the
theorem suggests the presence of a binary composition. (We would also remind
the reader here that we did talk about the product of two subsets of a group in
aremark earlier).

Theorem 5: A subgroup H of a group G is normal subgroup of G iff product
of two right cosets of H in G is again a right coset of H in G.
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Proof: Let H be a normal subgroup of G.
Let Ha and Hb be any two right cosets of H in G.
then (Ha)(Hb)= H(aH)b
= H(Ha)b
= HHab
= Hab ab e G

Conversely, we are given that product of any two right cosets of H in G is
again aright coset.

To show H is normal, let g € G be any element.

Then Hg and Hg ! are two right cosets of H in G. Thus HgHg ' is also a right
cosetof Hin G.

We claim HgHg ' = He

Now egeg! € HgHg'
= e € HgHg!

Also eeH

thus H and HgHg ' are two right cosets having one element common. Recalling
the properties of equivalence classes we know that two right cosets are either
equal or have no element in common. Thus, (as e is common element)

H= HgHg
Now hgh.g' € HgHg' forallh, h, e H g e G
= hghg'eH forallh,h, eH geG
= h'(hghg") e 'H
= ghlg’1 eH forallh eH,geG
= Hisnormalin G.
Hence the result.
Let H be a subgroup of a group G. Define
g 'Hg={g'hg| h e H}
then as seen earlier g"' Hg forms a subgroup of G.
Again, if we define a mapping f: H — g 'Hg, by
f()y=g'hg
then fwill be a 1-1 onto mapping.

In case G is finite, this would mean that both H and g 'Hg (for any g € G)
will have same number of elements.

Using this result we have thus proved that if H be a subgroup of a finite group
G s.t., there is no other subgroup of G having the same number of elements
as H has, then H is normal in G. After all, H and g 'Hg (for any g € G) have



same number of elements would mean (by given condition) that they are equal and
H=g 'Hg means H is normal.

Problem 1: Prove that a non empty subset H of a group G is normal subgroup
of G forallx,y € H, g € G, (gx)(gy)! € H.

Solution: Let // be normal subgroup of G.
Letx,y € H, g € G be any elements,
then @) =@ 'g) =gy g eH
asxy ' € H, g € G, His normal in G.
Conversely, we show H is normal subgroup of G.
Let x, y € H be any elements,
then xyl=exyle=(ex)(ey) ' €H asecG
i.e., His a subgroup of G.
Again, let h € H, g € G be any elements

then as (gh)(ge) ' e H
we get (gh)eg ) e H
= ghg' e H

= Hisnormal.

Problem 2: Show that the normaliser M(a) of @ in a group G may not be a normal
subgroup of G.

Solution: Let G = §; and a = (23), then N(a) = M(23)) = {c € S;| 0(23) =
(23)a} = {1, (23)}

Since, N(a)(12) = {(12), (132)}
and (12)N(a) = {(12), (123)}
wefind  MN(a)(12) # (12)N(a) or that N(a) is not normal.

Problem 3: If N is a normal subgroup of order 2, of a group G then show
that N < Z(G), the centre of G.

Solution: Let N = {a, e}.

Since e € Z(G) (centre being a subgroup contains ¢) all that we want to show
isthata € Z(G)

ie., ag =ga forallge G
or glag=ua forallge G
Let g € G be any element then as @ € N and N is normal, g 'ag € N =
{a, e}
= g’lag =aqor g’lag =e
Since g 'ag = e = ag = ge = ag = eg = a = e, which is not true
wegetglag=a = a < Z(G)
or N c Z(G).
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Problem 4: Show that a subgroup N of G is normal iff xy € N = yx € N.
Solution: Let N be normal in G and let xy € N.
Since yx = y(xy)y !
andxy € N,y € G, N is normal in G we find
Yoyl e N= yx € N.
Conversely, letn € N, g € G be any elements
then neN= (ng)g'eN
= g '(ng) € N (given condition)
= Nisnormalin G.
Problem 5: Show that a subgroup H of G is normal iff Ha # Hb = aH # bH.
Solution: Let H be normal in G and suppose Ha # Hb
then aH # bH
as Ha=aH, Hb = bH as H is normal in G.
Conversely, let Ha # Hb = aH # bH
then aH=bH = Ha = Hb
ie., a'be H=ab'eH
Letnow g € G, h € H be any elements, then
hleH=hlggleH
=>h'e)gheH=> (g ' ge H
=glhge H
= Hisnormal in G.

Problem 6: Let H be a subset of a group G. Let N(H) = {x € G | Hx = xH}
be the normalizer of H in G. and N(H) is a subgroup of G.

(0) If H is a subgroup of G then N(H) is the largest subgroup of G in
which H is normal.

(@) If H is a subgroup of G then H is normal in G iff N(H) = G.

(i7ii) Show by an example, the converse of (ii) fails if H is only a subset
of G

(iv) If His a subgroup of G and K is a subgroup of N(H) then H is normal
subgroup of HK.

Solution: (/) We show H is normal in N(H).

Since Hh=hH forall h € H, we find
h € N(H) forall h € H.
Thus H < N(H).

Again by definition of N(H), Hx = xH for all x € N(H)



=

Hisnormal in N(H).

To show that N(H) is the largest subgroup of G in which H is normal, suppose
K is any subgroup of G such that / is normal in K.

then k'Hk=H forallkeK

= Hk=kH forallke K
= ke NH) forallk e K
= K < N(H).

(1) Let H be a normal subgroup of G

(iif)

(iv)

then N(H)c G (by definition)
Letx € G be any element,
then xH = Hx as H normal in G.
= x e N(H) = G < N(H)
Hence G = N(H).
Conversely, let G = N(H), H is a subgroup of G (given)
Leth € H, g € G be any elements
Then geNH)asNH)=G
= gH=Hg
= Hisnormalin G.
Consider G =<a > = {e, a, a, a3}
then G being cyclic is abelian group.
Take H = {a}
then H is a subset and not a subgroup of G (e ¢ H)
Also N(H) = G as G is abelian.

Let K be a subgroup of N(H)
then k € K = k € N(H) = Hk=kH
ie., Hk=FkH forallke K
= HK=KH
= HK is subgroup of N(H)
Note, h € H= Hh= hH (=H)
= H < N(H) Also K < N(H)
Again H c HK < N(H)

Hence H is a subgroup of HK
= His normal subgroup of HK

[a € HK = a € N(H) = Ha = aH].
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3.4 QUOTIENT GROUPS

Let G'be a group and N a normal subgroup of G. Let us collect all the right cosets

G
of Nin G and form a set to be denoted by N or G/N. Since N is normal in G,

product of any two right cosets of N will again be a right coset of Nin G, i.e.,

we have a well defined binary composition on % (Prove it). We now show formally

that this set % forms a group under this product as its binary composition.
G _ G
For Na, Nb € —, NaNb = Nab ¢ —
N N

G
If Na, Nb, Nc € I be any members, then

Na(NbNc) = Na(Nbc) = Na(bc) = N(ab)c = NabNc = (NaNb) Nc.

G G G .
Again Ne € I will act as identity of I and for any Na € N Na ! will be

G
the inverse of Na. Thus I forms a group, called the Quotient group or the

factor group of G by N.

It is easy to see that if G is abelian then so would be any of its quotient groups
as

NaNb = Nab = Nba = NbNa.

Converse of this result may not hold.

G . “ e .
Remarks: (i) In NS N is normal, it is immaterial whether we use the word

right cosets or left cosets, as Na = aN for all a.

G G
(if) It would indeeed be interesting to see what el and G are equal to.
Arethese G and {e} respectively ? Well not really but ‘almost’ so. We will take
it up when we come to isomorphisms.
Theorem 6: If G is a finite group and N is a normal subgroup of G then

(%)



Proof: Since G is finite, using Lagrange’s theorem

2G) _

number of distinct right cosets of Nin G
o(N)

42)

Theorem 7: Every quotient group of a cyclic group is cyclic.
Proof: Let G = <a > be a cyclic group.

Then G is abelian, so every subgroup of G is normal. Let H be any subgroup

of G. We show % is cyclic. In fact we claim % is generated by Ha.

Let Hx € % be any element.

Thenx € G =<a >, i.e., x will be some power of a

Let x=a"

Then Hx= Ha"=Haa..... a  (mtimes)
=Ha Ha ...... Ha (m times)
= (Ha)"

i.e., any element Hx of % is a power of Ha = Ha generates %

or that ¢ is cyclic.
H

Remarks:(7) The above result is proved for m > 0. In case m < 0, the proof
follows similarly. Notice ” =a ™= (a”')" where n >0 and remembering that Ha~
'= (Ha)™" and so (Ha™")" = (Ha)™ = (Ha)".

(i) If G=<a>iscyclic and H < G, then o(G/H) is the least +ve integer m,
s.t.,a" € H.

We know if H < G, then H = <a"> where m is the least +ve integer s.t., a”
€ H (see page 81).

Also, G/H =< Ha >. So o(G/H) = o(Ha) = m

as (Ha)" =Had"=Hasad" € Hand if (Ha) = H,then Ha"=H=d € H
= m < ras m is such least.

Hence, o(Ha) = m and so o(G/H) = m.

(#ii) Converse of this result is not true.
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a b
Example 2: Let G be the set of 2 x 2 matrices over reals of the type [0 d]

where ad # 0. Then it is easy to see that G will form a group under matrix

1 b
1 0 - T
multiplication. [O 1} willbeidentity, | ¢ %@ | will be inverse of any element
0 —
d

a b
[0 d] .Also G is not abelian.

1 b
Let N be the subset containing members of the type [0 1 } . Then Nis asubgroup

of G. (Prove!) Also it is normal as the product of the type
b

1
a b1 kl|la ad | akd +bd -2
0 dllo 1 . d1eN
0 0 1

. G G . .
So we get the quotient group N We show v n abelian.

G
Let Nx, Ny € ~ be any elements, thenx, y € G.

a b c e
Letx = 0o dl"Y o 7

G
I will be abelian iff NxNy = NyNx

& Nxy = Nyx
< xyOx)leN
o xyxlyleN
All we need check now is that the product

1 bl _e
a bllc ellg adllc of|. . [l t}
{0 d}{o J | : is a matrix of the type | , |-
0o — |0 =
d f

Thus we can have an abelian quotient group, without the ‘parent’ group being
abelian.



Example 3: Let <Z, +> be the group of integers and let N= {3n | n € Z} then
N is anormal subgroup of Z.

% will consist of members of the type N+ a,a € Z

We show % contains only three elements. Let a € Z be any element, where

a#0, 1,2 then we can write, by division algorithm,
a=3qg+r where0<r<2
= N+a=N+@Bgq+r)=(N+3q)+r=N+r as3q € N.
but » can take values 0, 1, 2.
Hence N + a will be one of
N,N+1,N+2

or that % contains only these three members.

Remarks: (i) This example also tells us that in case of cosets, Ha = Hb may not
necessarily mean a = b. For instance, N+4 =N+ 1, but4 # 1 in above example.

[N+4=(N+3)+1=N+1].

(i) This serves as an example of an infinite group which has a subgroup N
having finite index in G.

(¢ii) This is also an example of a finite quotient group G/H, where the ‘parent’
group G is not finite. It is, however, easy to see that quotient group of a

finite group is finite.
. G G
(iv) If Wl = 72 then G, = G,
G _G
Let g, € G, be any element, then Ng, € ~ N

= Ng, = Ng, for some g, € G,
= g8 'eNcG,=>gg, ' =gforsomege G,
= &~ ggz_] € G,= G, c G,. Similarly G, ¢ G,. Hence G, = G,,.

Problem 4: Find the order of the element <6 > + 5 in the group %
<

Soluton: We have Z,=10,1,2,.. 7} mod 8
and <6>=1{0,6, 12} = H (say)
Then, Zs _Zs _ ([ [+1, H+2, H+3, H+4, H+5)

<6> H
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={<6>,<6>+], <6>+2, <6>+3, <6 >+4, <6>+5}
Now, <6 >+ 5 # < 6 >, the identity
Again 2(<6>+5)=<6>+10=<6>+4=<6>
Similarly, 3(< 6 >+5), 4(< 6 >+5), 5(< 6 >+5) arenot < 6 >

whereas 6(< 6 >+5) =< 6 >+30 =< 6 >=1identity and hence order of < 6 >+5
will be 6.

Problem 8: Let N be a normal subgroup of a group G. Show that o(Na)|o(a)
forany a € G.

Soluton: Let o(a) =n
then 7 is the least +ve integer s.t., a" = e.
This gives Na" = Ne

= Na.a........ a=N

(n times)

(n times)
n_ G .. . G
= (Na)"=N, Na € v and N is identity of v

= o(Na) | n or o(Na) |o(a).

Problem 9: If G is a group such that Z(GG) is cyclic, where Z(G) is centre

of G then show that G is abelian.
G
Solution: Let us write Z(G)=N. Then ~ is cyclic. Suppose it is generated by

Ng.

Let a, b € G be any two elements,

G
then Na, Nb € N
= Na = (Ng)", Nb = (Ng)" for some n, m
= Na=Ng.Ng ... Ng = Ng"
Nb = Ng"

ag”" =x,bg™ =y forsomex,ye N

a=xg', b=yg"

ab = (xg") (vg") = x(g"y) &"
=x(yg") g" asy € N=Z(G)
=xyg" g"

U u Uy



n+m

= XVg
Similarly, ba = (yg") (xg") =y (g"x) &" = y (xg") &"
= ()g" "
= ab=ba asxy=yxasx,y e Z(G)
Showing that G is abelian.

G
Remarks: (i) We are talking about ~ ©) assuming, therefore, that Z(G) is a

normal subgroup of G, aresult which is easily seen to be true. See exercises.

(71) One can, moving on same lines as in the above solution prove that if G/
H is cyclic, where H is a subgroup of Z(G) then G is abelian.

(7ii) If G is anon abelian group then G/Z(G) is not cyclic.

(iv) It % is cyclic for some normal subgroup H of G then G may not be
abelian. Take G = Quaternion group and H = {+1, £ i} then o(G/H) =

% =2 aprime. So G/H is cyclic, but G is not abelian.

Problem 10: Let G be a non-abelian group of order pq where p, q are primes
then o(Z(G)) = 1.

G
Solution: Since G is non-abelian, by Problem 9, ~ ©) isnot cyclic.

Now, o(Z(G)) | o(G) = pg
= o(Z(G)) =1, p, q or pq
o(Z(G))= pg= ZG) =G

= (G 1is abelian which is not so.

o(Z(G))=p=0o(G/Z(G)) = % = ¢. aprime, meaning G(Z(G)) is cyclic
which is also not true.

Similarly, o(Z(G)) = g cannot hold and we are left with the only possibility that
o(Z(G)) = 1.

Problem 11: Give an example of an infinite group in which every element
is of finite order.

Solution: (a) Let < Q, +>and <Z, + > be the groups of rationals and integers
under addition. Then the quotient group

% - {Z+ﬂ ﬂEQ}

ni|n
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is an infinite group. Consider any member Z + 2 of % .
n

Since n(Z+ﬂj:Z+nﬂ:Z+m:Z = Zero of%

n n

m .
we find Z+— has finite order < n. Hence we have our example.
n

(b) Consider again

G={Z+1

nz0

—| m , nare integers, p = fixed prime}
p

Then G is a subgroup of % .

Now p"| z+ 2 |=z+ - p" =Z + m=7Z = zero of G
p P . P
p p

m
= order of Z + ? divides p"

m
= order of Z+? is p, r<n

= order of every element in G is finite and is of the form p".

Since G is inifinite, we find this would serve as an example of an infinite p-
group.
Again, we can show that every subgroup H(#G) of G is of finite order. Hence

this is also an example of an infinite group in which every proper subgroup is of
finite order.

Problem 12: Show that <Q, +> has no proper subgroup of finite index.
Solution: Suppose H is any proper subgroup of <Q, +>having finite index n.

Then, o(Q/H) = n.

Since H is proper subgroup of Q, = %e Q s.t., %e H

Now, if x+H e % be any element

then nx+H)=H=>nmn+H=H
=nmxeH VxeQ

Take x=i, then n“ e H i.e., 2 ¢ H which is not true.
nb nb b

Hence, such a subgroup does not exist.



1. What is a normal subgroup?

3. Is every quotient group of a cyclic group is cyclic?

Check Your Progress

What is the complex of two subgroups?

3.5

ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

. A subgroup H of a group G is called a normal subgroup of G if Ha = aH for

alla eG.

Let H and K be two subgroups of a group G and HK = {hk |h “ H, k “K}
then HK, a non-empty subset of G, called

. Yes.

3.6

SUMMARY

Let H and K be two subgroups of a group G. We define HK = {hk|h e H,
k K} then HK will be a non-empty subset of G (Sometimes, called the
complex of H and K)

A subgroup H of a group G is called a normal subgroup of G if Ha = aH for
alla G.

A normal subgroup is also called invariant or self-conjugate subgroup.

H be a subgroup of a finite group G s.t., there is no other subgroup of G
having the same number of elements as H has, then H is normal in G.

A quotient group or factor group is a mathematical group obtained by
aggregating similar elements of a larger group using an equivalence relation
that preserves the group structure.

Let H be anormal subgroup of G. Then it can be verified that the cosets
of G relative to H form a group. This group is called the quotient
group or factor group of G relative to H and is denoted G/H.

Set of self-conjugate elements of G forms an abelian group Z which is
called the center of G.

3.7

KEY WORDS

Counting principle: If there are m ways to do one thing, and n ways to do
another, then there are m*n ways of doing both.
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e Cyclic group: A cyclic group is a group that can be generated by a single
element (the group generator).

e Subset: a set of which all the elements are contained in another set.

e Subgroup: a group whose members are all members of another group,
both being subject to the same operations.

3.8 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. Define self-conjugate subgroup.

2. What is a simple group and also give an example of simple group.
3. Show that a subgroup N of G is normal iff xy eN = yx N.
4,

Show that the normaliser N(a) of a in a group G may not be a normal
subgroup of G.

Long Answer Questions
1. Prove that HK is a subgroup of G iff HK = KH.
2. Prove that a subgroup H ofa group G isnormal in Giff Hg=H forall g G.

3. Show that the only abelian simple groups are groups of prime order.

4. Describe quotient groups.
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UNIT 4 CAYLEY’S THEOREM

Structure

4.0 Introduction

4.1 Objectives

4.2 Homomorphisms

4.3 Automorphisms

4.4 Permutation Groups

4.5 Cayley’s Theorem

4.6 Answers to Check Your Progress Questions

4.7 Summary

4.8 Key Words

4.9 Self Assessment Questions and Exercises
4.10 Further Readings

4.0 INTRODUCTION

In algebra, a homomorphism is a structure-preserving map between two algebraic
structures of the same type (such as two groups). A homomorphism may also be
an isomorphism, an endomorphism, an automorphism, etc. In this unit, you will
understand the notion of isomorphism (a type of equality) in algebraic systems. In
the end, permutation groups and generalized Cayley’s theorem are discussed.

4.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand the concept of homomorphisms
e Understand the concept of automorphisms
e Know about permutation groups
¢ Discuss Cayley’s theorem

4.2 HOMOMORPHISMS

In this section we introduce the reader to the idea of an isomorphism which could
also be termed as an ‘indirect’ equality in algebraic systems. Indeed, if two systems
have the same number of elements and behave exactly in the same manner, nothing
much is lost in calling them equal, although at times the idea of equality may look
little uncomfortable, especially in case of infinite sets.

Definition: Let < G, * > and < G', 0 > be two groups.
A mapping f: G — G'is called a homomorphism if
f@a*b)y=f(a)of(b) a,beG
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As agreed earlier, and when there is no scope of confusion, we shall use the
same symbol .” for both binary compositions.

With that as notation we find a map
f: G — G'is ahomomorphism if
flab) = fa)f(D)

If, in addition, / happens to be one-one, onto, we say fis an isomorphism
and in that case write G = G

Also clearly then
f(aa, ... a,) = flafla,) ... fa,)
holds under an isomorphism (homomorphism)
An onto homomorphism is called epimorphism.
A one-one homomorphism is called monomorphism.
A homomorphism from a group G to itself'is called an endomorphism of G.
An isomorphism from a group G to itself'is called automorphism of G.

Iff: G —> G'is onto homomorphism, then G'is called homomorphic image
of G.

Example 1: Let < Z, + > and < E, + > be the groups of integers and even
integers.

Define a map f:Z —>E,s.t,
f(x)=2x forallx € Z
then f'is well defined asx =y = 2x =2y = f(x) =1 (»)
that fis 1—1 is clear by taking the steps backwards.
fis ahomomorphism as
faty)=2x+y)=2x+2y=f(x)+f()
Also fis onto as any even integer 2x would have x as its pre-image.
Hence f1is an isomorphism.
In fact this example shows that a subset can be isomorphic to its superset.

Example 2: Let R* be the group of positive real numbers under multiplication
and R the group of all real numbers under addition. Then the map

6:R" > Rs.t,
Ax) =log x
is an isomorphism.
O1s clearly well defined.
ax) = &Ay)
= logx=logy



—  plogx = logy
= x=y
shows that @1s one-one.
Since Axy) =logxy =logx +logy = &x) + &y)
we find #1s a homomorphism.
Finally, if y € R be any member, then

Since ¢’ € R" and A¢") =y, we gather that #is onto and hence on isomorphism.
(The map f: R — R¥, s.t., f(a) = €° can also be considered.)

Theorem 1: If f: G — G'is a homomorphism then
@) fle)=¢
@) S = ()
@) f(")=[f()]", n an integer.
where e, e’ are identity elements of G and G' respectively.
Proof: (i) We have
e.e=e
= fle.e)=f(e)
= f(e).f(e)=f(e)
= fle).f(e=f(e).¢
= f(e) =e' (cancellation)
(if) Again xx ' = e =x"lx
= fx) =f(e) = f(x"'x)
= @) =e =) )
= (S =1,

(iii) Let n be a +ve integer.

)= f(xx x)

(n times)

=f(x).f(x) ...... f(x) (ntimes)
= (f))".
If n =0, we have the result by (7). In case n is —ve integer, result follows by
using (ii).

Problem 4: Find all the homomorphisms from % to é

Solution: Let f L 2 e a homomorphism.
47 6Z

Then f(4Z+n)=nf(4Z+1)

Cayley'’s Theorem

NOTES

Self-Instructional
Material

65



Cayley'’s Theorem

66

NOTES

Self-Instructional
Material

So, fiscompletely known if f(4Z + 1) is known.
Now order of (4Z + 1) is 4 and so o( {[4Z + 1)) divides 4
Also o( f(4Z + 1)) divides 6 and thus o( f(4Z + 1)) =1 or 2

If o( f(4Z + 1))=1, then f[4Z + 1) = 6Z = zero of é

Hence f(4Z + n) = zero
If o(f(4Z + 1))=2,then [4Z + 1)=6Z +3
= f4Z + n)=6Z + 3n
Also fl4Z. +n+4Z +m) =f4Z +n+ m)
=6Z + 3(n+ m)
= (6Z + 3n) + (6Z + 3m)
=f(4Z + n) + f(4Z + m)

Thus there are two choices for fand it can be defined as

fAZ. +n) =6Z+ 3n
Notice 4Z+n=4Z+m
=>n—m € 4Z
= 3(n—m) € 12Z c 6Z
= 3(n—m) € 6Z
= 6Z + 3n € 64+ 3m
i.e.,f is well defined.

. Z Z .
So there are two homomorphisms from AT A In fact, in general, there are

d homomorphisms from z - z where d=g.c.d.(m, n)
mZ,  nZ

Definition: Let /: G — G'be ahomomorphism. The Kernel of /, (denoted by
Ker f') is defined by

Kerf={xe G|f(x)=e'}
where €’ is identity of G'.
Theorem 2: If f: G —> G' be a homomorphism, then Ker fis a normal
subgroup of G.
Proof: Since f(e) = €', e € Ker f, thus Ker f# ¢. Again,
x,ye Kerf=f(x)=¢€
fo)=eé



Now [y )=/ fO ) =)' =e.e'=e
= xy ! Ker f
Hence it is a subgroup of G.
Again, forany g € G, x € Ker f
f(g'xg) = f(g Wfg)

=(f@) S A = (@) e fg)
= (f@) (@) =¢

= glxg e Ker f
or that it is a normal subgroup of G.
Theorem 3: A homomorphism f: G — G'is one-one iff Ker f= {e}.
Proof: Let f: G - G' be one-one.

Let x € Ker f'be any element

then f(x)=e'and as f(e) = ¢’
fx)=f(e)=>x=easfis 1-1
Hence Ker f'= {e}.
Conversely, let Ker fcontain only the identity element.
Let S0 =/ ()
Then S@ (o) =e
= fy ) =e

= xy ' € Ker f= {e}
= xy‘1 =e
= x =y or that fis one-one.

Problem 2: Show that the group <R, +> of real numbers cannot be isomorphic
to the group R* of non zero real numbers under multiplication.

Solution: —1 € R* and order of —1 is 2 as (—1)*> = 1. But R has no element of
order 2. As if x € R is of order 2 then 2x = x + x = 0. But this does not hold
in <R, +> for any x except x = 0.

Under an isomorphism order of an element is preserved. Thus there cannot be
any isomorphism between R and R*.

Problem 3: Let G be a group and f: G — G s.t., f(x) = x! be a
homomorphism. Show that G is abelian.

Solution: Let x, y € G be any elements.
xy =@t =07
=fo D

=yx, hence G is abelian.
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Theorem 4: (Fundamental theorem of group homomorphism). Iff: G — G'be

an onto homomorphism with K = Ker f, then %EG’.

In other words, every homomorphic image of a group G is isomorphic to
a quotient group of G.

Proof: Define amap o: % -G, st

o(Ka)=f(a), a € G
We show ¢ is an isomorphism.

That ¢ is well defined follows by

Ka = Kb
= ab!' e K=Kerf
= flabH=¢e'
= f@(f(b) "' =e
= f(a)=f(b)

= @(Ka) = (Kb)
By retracing the steps backwards, we will prove that ¢ is 1-1.
Again as o(KaKb) = o(Kab) = f(ab) = f(a) f(b)
= ¢(Ka) ¢(KD)
we find ¢ is a homomorphism.

To check that ¢ is onto, let g’ € G'be any element. Since : G — G'is onto,
Jge G,s.t.,

f@=g
Now o(Kg)=f(g) =g’
Showing thereby that Kg is the required pre-image of g’ under .
Hence ¢ is an isomorphism.
Remark: The above theorem is also called first theorem of isomorphism. It

can also be stated as:

G
Kerf

Iff: G— G' is a homomorphism with K = Ker f, then = f(G).

Theorem 5: (Second theorem of [somorphism). Let H and K be two subgroups
of a group G, where H is normal in G, then

HK K
H HNK'

Proof: It is easy to see that H m K will be a normal subgroup of K and as
H c HK c G, H will be normal in HK.



Define a map f:K—)I_I]{—K s.t.,
S (k) = Hk
then as k, = k, = Hk, = Hk, = f(k)) = f(k,)

we find fis well defined.
Again f(k,k,)) = Hkk, = Hk Hk, = f (k))f (k,)
shows f1s a homomorphism.

That f1s onto is obvious and thus using Fundamental theorem, we find

ﬂz K
H Kerf
Since keKerf< f(h)=H
< Hk=H
< ke H
< ke HNK (ke KasKer fcK)
We find Kerf=HnNnK

and our theorem is proved.

Lemma: If H and K are two normal subgroups of a group G such that H

K G
K, then y7a is a normal subgroup of T and conversely.

K . G .-
Proof: 77 isanonempty subset of e by definition.

K
For any Hk,, Hk, € I

(Hky)(Hly)™" = (Hky)(Hky ™) = Hi k™! e g

K .
ie., 7 1sa subgroup.

Again, for any gy X and Hg e o , We notice,
H H
(Hg) '(Hk)(Hg) = Hg ' HkHg
K
= H _lk -
g KgE H

asg € G, k € K, K is normal in G gives g ! kg € K.

We leave the converse as an exercise for the reader.
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Theorem 6: (Third theorem of isomorphism). If H and K are two normal
subgroups of G such that H K, then

G G/H

KI/H'

I

= |

K . G
Proof: The above lemma ensures that 5 1sa normal subgroup of I and,

therefore, we can talk of

K/H"

Define a map /e % - % s.t.,

f(Ha)=Ka, aeG
f1is well defined as

Ha = Hb

=ab'e Hc K

= Ka = Kb

= f(Ha) = f (HD)
f1s ahomomorphism as

f(HaHb) = f (Hab) = Kab = KaKb = f (Ha) f (HD).
Ontoness of f1s obvious.
Using Fundamental theorem of group homomorphism we can say

G G/H

K~ Ker f

K
We claim Ker f= y7a

G
A member of Ker f will be some member of IR

Now Ha € Ker f < f(Ha) = K (identity of G/K)
& Ka=K
& aekK

e e X
QGEH

H find AL od
€nce we In K _K/H

which proves our result. It is also called Freshman s theorem.

. K : K . G
Remark: Since T Ker £, we notice that 7 1sa normal subgroup of H and

K .
hence we can talk of . Thus we need not prove separately that 7 sa

K/H

G
normal subgroup of R



Theorem 7: Let f: G — G' be an onto homomorphism with Ker f= K. For
H' a subgroup of G', define

H={xeG|f(x) e H}
Then
(i) H is a subgroup of G and K < H.
(i) H'is normal subgroup of G'iff H is normal in G
G G

(iii) If H' is normal in G' then

H  H
(iv) This association gives a one-one onto mapping from the family S' of

all subgroups of G' onto the family S of all subgroups of G, that contain
K.

Proof: () H= g as f(e)=e' € H showse € H

Agin,  xyeH =f(x),/() e H
= (O e H'
SfohYeH=xy'eH

Thus H is a subgroup.

Since xeKerf=K=f(x)=e' € H'

we findx e H= K c H.

(it) Let Hbenormal in G.

Letg’'e G', h' € H'be any elements. Since fisonto 3 g € G, h € G such
that f(g)=g',f(h)=h".Since h' €e HLh e H

Now
g he'= (/@) S f(2)
= £ S f(2) =f(g " hg) € H'

asg € G, h € H, His normal in G means g 'hg € H
Thus H'isnormal in G'.
Conversely, let H' be normal in G
For any elements 7 € H, g € G,

Ag" hg) = ()" i) fig) € H'
as flh)y e H, f(g) € G', H is normal in G’
= g 'hg € Hor that H is normal in G.

’

(iii) Defineamapping ¢:G — G s.t.,

’

0@ =H'f(g)
then @ is well defined as g, = g,
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(iv)

= f(g) =/(g)

= H'f(g)=Hf(g,)

= 0(g)) = 9(g,)
¢ will be a homomorphism as
0(g8)=H' f(gg) =H f(g)f(g) =H[f(g) Hf(g)
= o(g)o(g,)

’
!

Again, forany H'g' € G

sinceg’ € G'andfisonto3 g € G,s.t.,f(g) =g

’

or that ¢(g) = H' f(g) = H'g' showing that ¢ is onto.
By fundamental theorem then

G _ G
H' XKerg
Now xeKero ©okx)=H
SHf(x)=H'
Sfx)eHeoxeH
Hence Kero=H

Define a mapping y : S’ — §, s.t.,
y(H)=H

where, of course, His {x € G |f(x) € H'} forany H'in S’ By (i) we know
that it is subgroup of G, containing K and is thus a member of S.
v is, therefore, a well defined mapping.

Let now y(H") = y(T") where H', T" € §'
then H= T where
H={xe G|f(x) e H}
T={xeG|f(x)e T}

Now forany 2’ € H' < G/, since f: G — G'is onto, we can find /1 € G,
st,f(hy=h"e H'

But this shows he H=T
= f(heTl
=>hel'=>HCcT
Similarly 7"'c H'
i.e., H'=T' or that y is one-one.
We show now v is onto.

Let H € § be any member, then H is a subgroup of G and K < H.
Consider f(H) = { f(h) | h € H}



then f(Hy#@pase € H= f(e)=e' € f(H) Cayley’s Theorem
Again, for any f'(h,), f(h,) € f(H), h,h, e H
and (f(h))(f (hy)) " = f(hyhy ) € f(H)
i.e., f(H) is a subgroup of G'". NOTES
We show f (H) = H'is the required pre-image of H under v,
i.e., we show y(H") = H,
For that we need show H= {x € G| f(x) € H'}
Letx € Hthen f(x) € f(H)=H'
=>xe{xeCG|f(x)e H}
ortht HC {x e G |f(x) € H"}
Again,ifx € {x e G| f(x) € H'}
then /' (x) € H'=f(H)
dh e H,st, f(x)=f(h)
= fxh ) =e'
= xh! e Ker f=K
= xe Khc H [Kc H]|
Thus {xeG|fx)eH}ycH
Hence H={xeG|f(x)e H}
or that w(H') = H and so v is onto.
which completes the proof.

Problem 4: Let N be a normal subgroup of G, then show that any subgroup

H
of G/N is of the type N where H is a subgroup of G and N  H.

Solution: Let 7 be any subgroup of G/N.
Let /: G — G/N, s.t., f(x) = Nx be the natural homomorphism.

Let H={xe G|f(x) e H},then H<Gand Nc H

as in above theorem.

H —
NOWW={Nh|heH}={f(h)|heH}:f(H)=H
which proves the result.

Problem 5: Find all the subgroups of (1_Z2) , Where

Z = group of all integers under addition

and (12) = subgroup of L consisting of all multiples of 12.
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7z . H
Solution: By above problem, any subgroup of © is of the form © where

H is a subgroup of Z under addition and contains (12). But any subgroup of Z
NOTES under addition is (n) = set of all multiples of n, n > 0.

V4
o H=(2),(3), (4), (6), (12). So subgroups of @ are

@ 6 @ © 12
(12)" (12)" (12)" (12)" (12)

Note % = {(12), (12) + 2, (12) + 4, (12) + 6, (12) + 8, (12) + 10}

1O
12)

@
12)

(©6)
1) = 112),(12)+ 6}

= {(12), (12) + 3, (12) + 6, (12) + 9}

={(12), (12) + 4, (12) + 8}

12)
() = a2y,

4.3 AUTOMORPHISMS

Example 3: Let G be a group, then the identitymap /: G — G, s.t., [ (x) =x
is trivially an automorphism of G. In fact, it is sometimes called the trivial
automorphism of G.

Example 4: Let Z = group of integer under addition
then 17> L, st.,
fn)=—n
is an automorphism as f(n) =f(m) > -n=—-m=>n=m = fis 1-1.
Again, since for any n € Z, f'(—n) = n we find fis onto.
Now f(n+m)=—(n+m)=—n—m=f(n)+f(m)
shows fis a homomorphism and hence an automorphism.

Example 5: If G be an abelian group and f: G — G be such that £ (x) =x"!
then as f(xy) = () ' =y ' x T =x1y1 =) f),
f1s ahomomorphism.

Again [ =) =x'=y"
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= x=y=fis 1-1.
fis clearly onto and hence an automorphism.

Example 6: If G be anon-abelian group, then the above defined map f: G —»
G s.t., f(x)=x"!is not an automorphism.

Since G is non-abelian, I x,y € Gs.t., xy # yx
Now if ) = fFfy)
then @) =xy!
= ()= 00
= Xy = yx, a contradiction.
Hence f is not an automorphism.
We notice then f: G— G, s.t., £ (x) =x"! is an automorphism iff G is abelian.

Theorem 8: Let G be a group. Let Aut G denote the set of all automorphisms
of G and A(G) be the group of all permutations of G. Then Aut G is a subgroup

of A(G).
Proof: Since / € Aut G, Aut G # ¢
Let 7' € Aut G. Then T'is 1-1 onto from G to G.
. T'is apermutation of G.
. T € A(G). So, Aut G < A(G).
Let 7|, T, € Aut G.
Then (T} T)) = T,(Ty(w))
= T(T(x)T,(y)) as T, is a homomorphism
T(T,(x))T(T(y)) as T, is a homomorphism
(T\T)X)(T,T)(y) forallx,y e G
. T, T, is ahomomorphism from G into G.
Again, (T,Ty) () = (T, T,) (v)
= 7,(T, &) = (T, (T, )
= T,x)=T,(y) as T, is 1-1
= x=y as T,is 1-1
. T\T,is 1-1
Letx € G.Since T, : G —»> Gisonto 3y € Gs.t. T|(y) = x.
AgainasT,: G—> Gisonto,Ize Gst.y=T,(2)
= T(T,(2) =x
= (T, T =x
. T,T, is also onto.
So, T'T, € Aut G.

Cayley'’s Theorem
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Let T € Aut G. Then Tis 1-1 onto = T is invertible and
T!': GG st.T'W=y & Ty)=x
as TT'=1=T"'T

T'is 1-1 as T! (xl)ZTl(xz)
= TT" (x) =TT (x,)
= I(x) =1(x,)
= X =X,

Letx e Gtheny=T(x) € G
o) =T'(T@)=T'"Dx=x

. T"'is onto.

Let T (xy) =z then T(z) = xy
Let '@ =x,T"'»=y
Then x=1T(x), y=T0,)

= Tz)=xy = T(xl) T(yl) = T(xlyl)
as T'is a homomorphism.
S z=xy asTis1-1
So Tl(xy)Zzleylzrl(x)Tl(y) forallx,y e G

= T 'isahomomorphism.
Thus T'eAutG
Hence, Aut G is a subgroup of 4(G).
(Thus Aut G forms a group).
Inner Automorphisms

Letg € G. Define T,:G—>Gstt.

T, (x)=gxg! forallx e G
Then Tg is 1-1 as

T, =T,0)
= gxg' = gyg’
= x=y.

Letx € G. Theng ' xg € G.

and T, (g ' xe)=g(g' xe) g =x
T o 1s onto
Also T,(w) = g@w) g’
= (gxg) (g ")



= Tg (x) Tg (y) forallx,y, e G Cayley’s Theorem
Hence T, is automorphism of G and it is called an inner automorphism of G.

Theorem 9: The set I(G) of all inner automorphisms of G is a subgroup of

Aut G NOTES
Proof: 7, € I(G) where e = identity of G.
[G)#¢
Let T, . T, € 1(G)
Then Ty Ty, (¥) = T, grg,) = ggxg, ' g

= (gl gz) X (g1 82)71

= Tpq, (¥) forallx e G

T, Ty, = Tgg, € 1(G)
Let Tg e I(G)
Then TngﬁlzTeZI (as T, (x) =exe ! =x forall x € G)
and T, T,=1

_ -1 -1

T, , = (Tg) = (Tg) e I(G)

. 1(G) 1s a subgroup of Aut G.

In fact, /(G) is normal in Aut G.

1 1 1 = 9
A question arises, when is 7, =T,

Suppose T, =T,

81 &2
then To (x) =Ty, (x) forallx e G
= g, X gl‘l =g,X gz‘l forallx € G
= gz‘l g x=x gz‘l g, forallx e G
= g ' g €20
< g,4G) = g,2(G)

r, =T, < g2G)=g,2(G)

g
Problem 6: For any integer a > 1, n > 0 show that
n|o(a"-1)
Solution: Let G = <b>s.t. o(G) = o(b) = a"-1
Define T:G—>G s¢t.,
T(x) =x"
Since (a,d-1)=1, TeAutG
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Also * (x) = T(T (x))
= T = () =
Ingeneral, 7 (x)= x*

T"(x)=x"=x forallx e G

(as D =e= x" T =c= " =x)
S =1
If T" =1, then T"(b) = b

= b =b= " =

= o(b) | (@"-1)

= d'-1|(@"-1) = a"-1 < (a"-1)

= d"<d"=>n<m
ol =n

Also o(Aut G) = ¢ (a"-1),
TeAutG = o(7) | o(Aut G)
= n|oe(a"-1).
Characteristic Subgroups

A subgroup H of G is called a characteristic subgroup of G if
T(HycH forallT € AutG.
Example 7: Let G be a cyclic group of order 4
G = {e, a, a, a3}
Then Aut G = {I, T}, where T (x) = x> forallx € G
Let H={e, d®>} <G
I(H)={I(e), 1(@)} =H
T(H)={T(e), T(@")} = {e,a*=a’} =H

.. H1is a characteristic subgroup of G.

4.4 PERMUTATION GROUPS

Theorem (Cayley’s) 10: Every group G is isomorphic to a permutation group.
Proof: Let G be the given group and A(G) be the group of all permutations of

the set G.
Foranya € G, defineamapf, : G— G,s.t,



f(x) = ax
thenasx=y = ax=ay = f,(x) = £,(»)
f,,1s well defined.

Again, J.x) =1,0)
= ax =ay

= x =y (cancellation in group G)
= f is 1-1.

Also, foranyy € G, sincef, (a'y)=a(a'y)=y, wefinda ! yis pre-image
of y or that f is onto and hence a permutation on G.

Thus f, € A(G).

Let K be the set of all such permutations. We show K is a subgroup of A(G).
K=#o¢asf €K

Let f,, f, € K be any members

thensince  fj o f, 1 (x)= f3,(f, 1 (x) = £, (%) =b(b7'x)
=ex = f(x) forall x
we find f, 1 = )" (Note f, = 1, identity of 4(G)).
Also as (f, o f,) x = f (bx) = a(bx) = (ab)x = f,,(x) for all x
we find fp =1 0%
Now Jao U =fao fa=/,1 €K
Showing that K is a subgroup of 4(G).
Define now a mapping ¢ : G - K, s.t.,
o(a) = £,
then ¢ is well defined, 1-1 map as
a=>b
< ax = bx
< fx)=f(Kx) Vx
< Jfo=h
< o(a) = 9(b)
@ is obviously onto, and since
o(ab) =1, = 1, 0 1, = ¢(a) o(b)

¢ is a homomorphism and hence an isomorphism which proves our assertion.
Note K being a subgroup of a permutation group is a permutation group.

Remark: In particular, if G is a finite group of order n then G is isomorphic to
a subgroup of §,.
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Problem 7: Using Cayley s theorem, find the permutation group K isomorphic
to the group G = {2, 4, 6, 8} under multiplication modulo 10. (Here 6 is the
identity of G and G = <2>).
Solution: The set K as defined in the Cayley’s theorem above is given by
K=1{f |a e G}, where f is defined by f (x) = ax. Thus herea =2, 4, 8, 6
and

5H2)=4, f,(4)=8, [f(8)=6, f(6)=2

f2)=8, fi(4=6, f(8)=2, f(6)=4

fe2) =6, fu(4) =2, f(8) =4, f(6)=328

f2)=2, fAd =4, [fB)=8, f(6)=6
Thus fo=Tand K= {f, [, fo. fs =1}

If we identify £, with the permutation (1234), we notice the others are (13)(24),

(1432) and thus K is {(1234), (13)(24), (1432), I} and this is the required
premutation group isomorphic to G.

In fact the isomorphism can be viewed as #: G —> K, s.t.,
0(2)=(1234), (4) = (13)(24), 0(8) =(1432), 8(6) =1

Theorem 11: Order of any permutation f in S, is equal to the l.c.m. of the
orders of the disjoint cycles of f.

Proof: Let f=f, 1, ..... /,
be the representation of f'as product of disjoint cycles f,, /5, ....., f,
Let of)=r, =12, ... , N

then £/ =1 (identity of S, )

Let r=Llem.(ry, 7y ...... 1)
Now "= (f| fy ... [,) =1, fy ... [, as f;are disjoint and so commutative.
Sincer;|r foralli,wehaver=rk, i=1,2,...,n

Thus f = fih ke pmbn =g 1 T=1

Suppose now fi=1
= (fy o f) =1
= 1 =
= fl=fy= o =fi=1

as f, fys ceun , f, are disjoint. (Note if some f’l. # [ then L.H.S. cannot be /).
= r;|t foralli
= r|t

Hence r=o(f).



Example 8: Order of the permutation Cayley’s Theorem

(123456

D 3]:(1245)(36)

NOTES
is Le.m.(4, 2) =4 as 0(1245) = 4 and 0(36) = 2.

Problem 8: Give an example of two subgroups H, K which are not normal,
but HK is a subgroup.

Solution: Let H={1,(12)}
K=1{I,(123), (132)}
be two subgroups of S, (that these are subgroups can be verified).
Here HK= {1, (12), (123), (132), (12)(123), (12)(132)}
= {1, (12), (123), (132), (23), (13)}
KH={I,(123), (132), (12), (123)(12), (132)(12)}
= {1, (12), (123), (132), (23), (13)}
Thus  HK = KH = HK is a subgroup.
Now H(123) = {(123), (12)(123)} = {(123), (23)}
(123)H = {(123), (13)}
orthat H(123)# (123)H
ie., Ha#aH forsomea € S§,
= His notnormal in S,
Similarly one can check that K(14)# (14)K
or that K is not normal in §,.
Problem 9: Show that Z(S)) = {1}, (n = 3).
Solution: Let /'€ Z(S ) be such that /= [
then 3 a s.t., fla) = b where b # a
Let ¢ # a, b be any element (note n > 3)
Let g be the mapping where  g(a) = a
gb)=c
gle)=>b
then geS,
Now  (fg)a = figla)) =fla) =b
(gf)a = g(fla)) =gb)=c
= fg=gf ie,feZS)
Thus if /' I then it cannot belong to Z(S,) or that Z(S)) = {1}.
Cor.: S is non abelian V n > 3. Note G is abelian iff G = Z(G).
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4.5 CAYLEY’S THEOREM

Theorem 12: (Generalised Cayley’s theorem): Let H be a subgroup of G
and £= {aH | a € G} then 3 a homomorphism 6 : G — A(L) s.t., Ker Ois
the largest normal subgroup of G contained in H.

Proof: Define €: G — A(L) s.t.,

a9 =,
where fg L Lsit.
f, (aH) = gat
To show that @1is well defined, we need prove that fg e A(L)
Now fg (aH) = ]fg (bH)
= gaH = gbH

= aH=bH :>fgis 1-1

Again for any aH € £,

1 (¢ 'aH) = aH, showing that
fg is onto and thus fg e A(L)
Wehave  Agh) =/, AAR) =1,
and since fg , (aH) = ghaH

f, fiaH) = £, (fy(aH) = fhaH) = ghati
we find ]fg y = fg /
or that #is a homomorphism.

Since Kernel of a homomorphism is normal subgroup, we have Ker 6,a normal
subgroup of G.

Again, if g € Ker Othen
Ag) = I = Identity of A(L)

= fg =1
:>fg(aH)=aH VaH € £
In particular,

fg(eH)=eH2>geH=eH = gH=H
=>geH
= Ker c H

Let now K be any normal subgroup of G, contained in H. Let k£ € K be any
element. We want to show that £ € Ker & or that k) = 1.

or that fi=1
or that fi(@H)=aH ¥V aH



Now Jy (aH) = kaH = a(a'ka) H = ahH = aH
[Note a 'ka € K < H]
Hence K < Ker 8which proves the theorem.

Remarks: (i) If we wish to work with right cosets, &can be defined by &Ag) =
fg where fg (Ha) = Hag .
(if) If H= {e}, the above theorem is the Cayley’s theorem, as then Ker&= {e}
= fis 1-1.
Cor. (Index theorem): If H+ G is a subgroup of a finite group G s.t., o(G) does
not divide i (H)! then G has a non trivial normal subgroup. (i.e., G is not simple).
Proof: By above theorem, we find Ker #is a normal subgroup of G.

Since Ker 6c H# G,Ker 0= G

If Ker 8= {e}, then 0 is 1-1 and thus : G — A(L) is 1-1 homomorphism
i.e., G is isomorphic to a subgroup 7 of A(L).

= 0o(G) = o(T)

But o(7) | 0(4A(£)) = o(G) | 0o(A(L)) = i (H)! a contradiction and so

Ker 8+ {e} and is the required non trival normal subgroup.

Problem 10: Let H be a subgroup of a finite group G such that o(H) and
(i(H)—-1)! are coprime then show that H is normal in G.

Solution: Let S= {aH |a € G} = Set of left cosets of Hin G.

Define 0:G— A(S) s.t.,
0(e)=T,
where T,: S— Ss.t, Tg(aH) =gaH

Then as seen in generalised Cayley’s theorem, #is a homomorphism and Ker €
c H.

Also then G =T where T < A(S)

Ker8
= o(G/Ker 0) = o(T) where o(T) | 0o(A(S)) = |ic(H)
. _ o(G) _

Let i(H) o)~ n

0(G)
then o(7) | |z and thus o(Ker6) ||n
Again Ker < H = o(Ker ) | o(H)

= o(H) = m.o(Ker @) for some m

= 20— o(Ker 6)
n
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o(G)
= m=—
o(Ker 0)

or that nm||n= nm|nln—-1=m||n—-1
Also m | o(H) and as they are coprime, m = 1 or that H = Ker fi.e., H <G

1. What s epimorphism?
2. Whatis automorphism?

3. What is a characteristic group?

Check Your Progress

4.6

ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Anonto homomorphism is called epimorphism.

. Anisomorphism from a group G to itself'is called automorphism of G.
. A subgroup H of G is called a characteristic subgroup of G if

T(H)yc H forall T € AutG.

4.7

SUMMARY

Let<G, *>and <G’, 0 >be two groups. A mapping f: G— G ’is called
a homomorphismiff(a *b)=f(a)of(b) a, beG

An onto homomorphism is called epimorphism.

A one-one homomorphism is called monomorphism.

Ahomomorphism from a group G to itselfis called an endomorphism of G.
An isomorphism from a group G to itself'is called automorphism of G.

Iff: G G’is onto homomorphism, then G’ is called homomorphic image of
G.

Let G be a group, then the identitymap /- G G, s.t., [ (x) = x is trivially an
automorphism of G. In fact, it is sometimes called the trivial automorphism
of G.

The set /(G) of all inner automorphisms of G is a subgroup of Aut G.

A subgroup H of G is called a characteristic subgroup of Gif T(H) H for
allT AutG

¢ Every group G is isomorphic to a permutation group.



4.8 KEY WORDS

¢ Isomorphism: A one-to-one correspondence (mapping) between two sets
that preserves binary relationships between elements of the sets.

¢ Kernel: The kernel of a homomorphism measures the degree to which the
homomorphism fails to be injective.

e Permutation group: A group G whose elements are permutations of a
given set M and whose group operation is the composition of permutations
in G (which are thought of as bijective functions from the set M to itself).

4.9 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. Define homomorphisms with help of an example.

2. Prove the following theorem: a homomorphismf: G — G’ is one-one iff
Ker = {e}.

3. Give an example of automorphisms.

4. What are characteristics subgroups?

Long Answer Questions

1. The set /(G) of all inner automorphisms of G is a subgroup of Aut G.

2. Show that order of any permutation f'in §,, is equal to the /.c.m. of the
orders of the disjoint cycles of /.

3. Show that Z(S ) = {1}, (n = 3).

4. Prove generalised Cayley’s theorem.
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5.0

INTRODUCTION

In mathematics, you sometimes come across with a concept known as the “‘counting
principle”. This is concerned with the total number of combination under given
conditions. When you deal with the happening of two or more activities or events,
itis often required to know quickly the number of total possible activities or events.

It can be done by a mathematical device called counting principle.

In this unit, you will learn an equivalence relation on a finite set, measure the
size of the equivalence classes under this relation and then equate the number of
elements in the set to the sum of orders of these equivalence classes. With this

approach, this unit discusses some important results about finite groups.

5.1

OBJECTIVES

After going through this unit, you will be able to:

Discuss another counting principal for group theory
Know about its applications

Solve related problems



5.2 ANOTHER COUNTING PRINCIPLE

Definition: Let G be a group, a, b € G. Define a relation ~ on G as follows:
a~be3ceGsta=clbe

It is not difficult to see that ~ is an equivalence relation on G. If a ~ b we say
a is conjugate to b (or a, b are conjugates and relation ~ is called conjugate
relation on G).

Let cl(a) denote the equivalence class of a in G then cl(a) is called conjugate
class or conjugacy class of a in G. Since ~ 1s an equivalence relation on G, it
divides G into disjoint equivalence classes.

G = o cl(a), where

cla)= {x € G|x ~a}
= {xeGlx=y'lay,ye G}
=y ayly € G}
= set ofall conjugates of a in G.

Remarks: (i) cl(a) = {a} < a € Z(G)
Suppose  cl(a) = {a}. Then y lay=a forally € G
va=ay forally e G
a € Z(G)

Conversely, let a € Z(G). Let x € cl(a) be any element, then x =y 'ay for
somey € G

= x=ay'y (asa € Z(G)
= x=a = cl(a) = {a}.
(@) Gisabelian < cl(a)={a} foralla € G
Gisabelian < G = Z(G)
< ae ZG) foralla e G
< clla)={a} foralla € G.

We shall denote by k(G) or k, the number of conjugate classes in G. It follows
by remark (i) that o(G) = k < G is abelian.

Normalizer or Centralizer of an element a € G was defined to be the set

N(a) = {x € G |xa = ax for all x € G}. Also N(a) < G. It can be shown that
Na) =G < a € Z(G)

Na)=G < geNa) forallge G
& ga=ag forallge G
& a € Z(G).
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So, by remark (i) it follows that
N(a) = G < cl(a) = {a}.

Problem 1: Suppose a € G has only two conjugates in G then show that
N(a) is a normal subgroup of G.

Solution: Let a, g 'ag be two conjugates of @ in G. We show
G = N(a) U N(a)g

Let x € G. Consider x 'ax. Then x!

ax =a or g‘lag.
If x'ax = a, then xa = ax = x € N(a)
If xlax= g’1 ag, then xg’la = axg’1

= xg!' € Ma)

= x € Na)g

G = N(a) U N(a)g

and thus index of N(a) in G is 2, showing thereby that N(a) is a normal
subgroup of G.

Problem 2: Let G be a finite group and x, y be conjugate elements of G.
Show that the number of distinct elements g € G s.t. g 'xg =y is o(N(x)).

Solution: Letg=g,, g, ..., g, be distinct elements of G s.t., gl.‘lxgi =y
Let S=1{g=g 8 &}
We show that S = N(x)g
Suppose s € Sthens =g forsomei, 1<i<n
Ifs=g =g thens=g=eg e Nx)g
Ifs#g,thens=g,i#1

and g‘l xXg = gl._l xg;
= gg 'x = xgg
= gg' € NX)
= g € Nx)
= s € N(x)g
or that S < Nx)g
Again ze Nx)g = z=hg, heNx)
= zlxz=gth! xhg
= z'xz=g'xg asxh=hx
= 7! xXg=y
= z=g, forsomei
=>zel
= Nx)gc S



Hence S = Nx)g
and thus o(S) = o(N(x)g) = o(N(x))
(Note: As ggl.‘1 X = xggi‘1 foralli=1,.,n
(cggl._1 € N(x) for all i
= N(x)g = N(x)g, for all i)

Problem 3: Suppose X is a conjugate class of non trivial elements of G. Let
T € Aut G. Show that T(X) = {T(x) | x € X} is a conjugate class of elements
of G

Solution: Let X=cl(a), a+e
We show that  T(X) = cl(Ta)
Let yellX) =y = Tx, x e X=cla)
=T(g'ag), g€ G
= T(g)"' T(a) T(g) € cT(a))
L T(X) c cl(Ta)
Again zecd(Ta)y=z =h'Tah, heG
= (Th)™" Ta Th
(asTisonto=>h = Th, h € G)
= Th,”" Ta Th
= T(h! ah)
I(cl(a)) = T(X)
T(X) = cl(Ta)
Hence T(X) is a conjugate class of G.

m

5.3 APPLICATION AND RELATED PROBLEMS

The following theorem helps us to determine the order of conjugate class of an
element.

Theorem 1: Let G be a finite group, a € G.

G)
Then o(cl(a)) = _o6)_
(cl(@)) = — V@)
where cl(a) is the conjugate class of a.
Proof: Since N(a) < G, G can be written as union of disjoint right cosets of N(a)
inG.

Let G = -‘;1 N, [t<n=o(G)]
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Then o(G) =1t . o(N(a))

Let S = {xl’l axy..., X

-1 | . .
Suppose  x; ax, = X, ax; fori#j

1

;1 axz}
Then xlxj_la = axyx,
= xlxj_1 € Na)
= Na)x, = N(a)xj, a contradiction
". all elements in S are distincti.e., o(S) =t
We show that S = cl(a)
Let s €S thens= xl.’laxl., forsomei, 1<i<t
=> sis conjugate ofa
= s eclla)= Scclla)
Again xeca) > x=glag, g€ G
ge G=>ge Ma)x;, forsomei, 1<i<t¢
= g=yx, y € Ma)
Thus X = xl.’l y’layxi
= xl.’l ax; asya = ay
=>xeds
o cllayc S= S=cl(a)
and so o(cl(a)) = o(S) =t
0(G)
o(N(a)’

and hence from (1) we get o(cl(a)) =
Remark: Since G= o (cl(a))

o(G)= ZG o(cl(a))

) lla)+ X i
acZ(G) o(cla) ag Z(G) o(cla))

o(Z(G)) + w6 o(cl(a))
(By remark (i) earlier o(cl(a)) = 1 < a € Z(G)).

o(G)= oZG) + % . olcla)

o(G)

ie., o(G) = o(Z(G)) + a2 2(G) o(N(a))

This equation is called class equation of G.

(1)



Problem 4: Let G be a finite group and x € G then show that Another Counting

Principle
o(N()) o[g]
Solution: We show that c/(x) < G'x NOTES
Let veclx =y =glxg, geG
= (g x)x %)
= (g xg ' xx
e G'x

clx) ¢ G'(x)
o(cl(x)) < o(G'x)

o(G)
o(N(x))

< o(G'x) = o(G")

o(G)
€& < o(N(x)).

Problem 5: [findex of Z(G) in G is n then show that any conjugate class
has at most n elements.

Solution: We have

n= o(G) and o(cl(a)) = o(G)
o(Z(G)) o(N(a))
Since Z(G) < N(a) always

o(Z(G))lo(Ma)) = o(N(a)) = k.o(Z(G))

ie o(Cl(a)) = o(G) _ n.o(Z(G)) _n
T o(N(a)) ko(Z(G)) k

Thus, maximum value of o(c/(a)) is when k= 1, proving the result.

Problem 6: Let G be group of order p", p = prime, n = + ve integer. Show
that o(Z(G)) > 1.

Solution: If G = Z(G), o(Z(G)) = o(G) > 1.

If G # Z(G), then 3 some a € G, s.t., a ¢ Z(G).

Then N(a) < G [asa ¢ Z(G) = at # ta forsome ¢ € G, i.e.,t ¢ N(a), t € G].
' oN@) =p", m<n

o(G) _ pnfmj n—m>0

o(N(a))
ie. o(cl(a)) = p"™ = multiple of p

Le.,
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L o(cl(a)) = multiple of p = kp, (say)
ag Z(G)

By class equation of G
"=0(G)=0(Z(G))+ X o(clla
P (G) = o(Z(G)) e 2(G) (cl(a))

= o(Z(G) =p" ~kp =p(@P"" — k)

= plo(Z(G)) = o(Z(G) > 1.
Remark: It follows from above problem that if G is a finite non-abelian simple
group then o(G) is divisible by at least two distinct primes. Since G is simple, it
has no non-trivial normal subgroup. Now Z(G) is a normal subgroup of G. Z(G)
=G = Gis abelian, which is not so. Thus Z(G) = {e}, which means o(G) cannot
be of the type p", i.e., it is not divisible by only one prime.
Problem 7: A group of order p* (p = prime) is abelian.

Solution: Suppose o(G) =p* and G is non-abelian.

ThenZ(G)#G.So3a € G, s.t.,a ¢ Z(G) and as in previous problem, Ma) ¢ G.

Again, Z(G) < Ma) always but as a ¢ Z(G), Z(G) < N(a)
Now o(Z(G) | o(G) = p* = o(Z(G)) = 1, p or p*
But 0o(Z(G)) > 1 by problem 6
and o(Z(G)) = p* = Z(G) = G which is not true
Hence o(Z(G))=p
Again, o(NM(a)) | o(G) =p* gives o(N(a)) =1, p or p?
Since Na) # G, o(N(a)) #p*
Also Z(G) < N(a) = o(N(a)) > 1
o(Ma)) =p

But that means Z(G) = N(a), a contradiction

Hence G is abelian.

2
Note: If o(Z(G)) = p, then o(sz)Jz P _, aprime = Z(GG) iscyclic= G

p
is abelian.

A question arises whether group of order p*(p = prime) is abelian? The answer
is no as the Quaternion group is non-abelian and has order 2°. Infact, there exist
non-abelian groups of order p* for all primes p.

For example



b
a, b c are arbitrary
c

1 a
Let G=1:/0 1
0 0 elements of a field F¥

Then G is a non-abelian group of order p* if F'is a field of order p. It is called
the Heisenberg group over F. In general, order of the Heisenberg group over F
is (o(F))’.

Problem 8: Let G be a non abelian group of order p*. Determine o(Z(G))
and k = number of conjugate classes of G.

Solution: Since Gis non-abelian, 3a € G,s.t., Z(G) T Ma) T G asin previous
problems.
Now o(Z(G)) | o(G) =p* = o(LG)) = 1, p, p* or p’
Similarly,  o(M(a)) = 1, p, p* or p°
0(Z(G)) # 1. By problem 16
o(Z(G)) # p* as Z(G) # G
SO o(Z(G)) = p or p*
Similarly,  o(NM(a)) = p or p* and as Z(G) & N(a)
Wefind  o(Z(G)) = p and o(N(a)) = p*

Let now & be the total number of conjugate classes. Since

G = Y cl(a)

o(G) = a;ZG o(cl(a)) = aezZ(G) o(cl(a)) + aezZ(G) o(cl(a))

ie., P} =0(Z(G)) + B §(G) o(cl(a))

As number of conjugate classes when a € Z(G) is o(Z(G)) =p
[a € Z(G) & cl(a) = {a}, i.e., o(cl(a)) = 1]

So remaining classes are k—p, each will have order given by

Hence p’=p+(k—pp =>k=p*+p—1.

Problem 9 : Let G be a non-abelian group of order p>, wherep is a prime. Show
that Z(G) = G”.

A _ G _ 2 G
Solution: Now o(Z(G)) = p. So O(Z(G)] P = 70
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is abelian = G’ < Z(G) = G’ = {e} or Z(G). Since G is non-abelian, G’ =
Z(G)

In particular, D'q = Z(Dg) = {e, a*}

and G'=72(G)={1, -1},

where G is the quaternion group of order 8.
Problem 10: Find all the conjugate classes of the quaternion group.
Solution: We have the quaternion group

G={*l,+i +j, +k
Let us determine the conjugate class of'i.
Now, in general, we know that
<a>c N(a) in any group

[x e <a>=x=d" and as a.a” = a".a, we find a" € N(a)]

Thus <i>c NG)or {i, % i, i* =1} < N(i)
and, therefore, <i> < N(i) < G gives

4o(N())[8
Again,since  j ¢N(i) as ji # ij
and jegqG,

Ni) ¢ G
Hence o(N(i)) = 4 or that <i> = N(i)

. G)
Since o(cl(a)) = o
(cl(a)) SN (@)

o(cl(i)) = %:2

= cl(i)={i,—i} asi € cl(i) always and as —i = kik™!, —i € cl(i)
[kik™! = ki(=k) = —(k(ik)) = —(—kki) = I*i = —i]

Similarly other conjugate classes will be { j}, {+ k}, {1} {-1}

Notice as 1, -1 € Z(G) o(cl(1)) =1, o(cl(-1)) =1

as o(cl(a)) = 1< a € Z(G)

We can verify the class equation here

o(G) = o(Z(G)) + Fo(cl(@)

aeZ(G)
8=2+(2+2+2)

Problem 11: Let G be a group and e # a € G s.t., o(a) = finite. Suppose. G
has only two conjugate classes. Then show that G is a finite group of order 2.



Solution: Lete#b € G. Since G has only 2 conjugate classes, namely {e} and
cl(a). b € cl(a) .. b=g " ag for some g € G.

o(b)y=o0(a) forallb#ein G
Suppose  o(a)=mn, m>1, n>1
Then o(d) =n
Since order of all non identity elements in G is same, o(a™) = mn
n=mn = m = 1; a contradiction
o(a) = p = prime.
oby=p foralle#b e G
Suppose p =2
then @ #e=a* e cla)
a*=g'ag forsomeg e G
(@)= (g agf

=gldyg
=g'(g'agg
= g?ag
=gt ag
In this way, we get a = g?ag’
Since o(g)=o(a)=p
2P
a” =eae=a
= o =e=o0(a)=p|2’-1

By Fermat's Theorem, p | 2 —2
pl (2P —1)— (2 - 2) =1, a contradiction
p=2

= o(a)=2.Soo(b)=2foralle#b e G

= Gisabelian.

So, every conjugate class in G is of length one. Since G has only 2 classes,
order of G is 2.

(Note: 3 infinite groups in which no non-trivial element has finite order and group
has only 2 conjugate classes. Therefore, it is necessary to assume that 3 e #a
€ G s.t. o(a) = finite, in the above problem).

Problem 12: Prove that a group of order 15 is abelian. Hence, show that it
is cyclic.
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Solution: Suppose G is a group of order 15. Suppose it is non-abelian. Then
Z2(G)#G

L o(Z(G)=1,30r5 aso(Z(G))|o(G) =15

If o(Z(G))=3 or 5, then o(g] =5 or 3 = prime

= G is cyclic = G is abelian, a contradiction.
2(G)
o(4(G)) =1
Thus there is only one conjugate class of length one. All other classes are of
length 3 or 5 as order of class divides o(G) = 15. If all other classes are of length
3, then by class equation,

o(G)=15=1 + 3k, which is not true.

Therefore, there exists one class C of length 5 and this is the only class of length
5 (by class equation).

Letx € C. Then C = cl(x) and

o(G)
o(N(x))
Since x # e and x € N(x), o(x) | o(N(x)) = 3 = o(x) = 3.

Conversely, let o(x) = 3. Since o(x) | o(N(x)), o(N(x)) = 3k where k=1 or
5 as o(N(x)) | o(G) = 15.

If k=5, then o(N(x)) = 15 = 0o(G) = N(x) = G.
= x € Z(G) = x = e as Z(G) = {e}, a contradiction
k=1 = o(Nkx))=3

5=0(C) = o(cl(x)) = = o(N(x)) =3

:dmm=£%5:§=5

= clix)=C
as C is the only class of length 5. Since x € c/(x) we find x € C.

So, the number of elements of order 3 is 5, a contradiction as number of elements
of order p (p = prime) is multiple of p — 1 (in this case, number of elements of
order 3 will be a multiple of 2)

. G must be abelian.

Lete#x € G. Since o(x) | o(G) =15, o(x) =3 or 5. If all non-identity elements
in G are of order 3, let o(x) =3, o(y) =3, H=<x>, K=<y >then o(H) =
3 = o(K). Since G is abelian, H is normal in G, K isnormal in G = HK < G
= o(HK) | o(G) = 15.



o(H) o(K) _ 3x3

But o(HK) = oK) "

=9and 9 + 15

we get a contradiction

. da € Gs.t. o(a) = 5. By the same argument as above 3 b € G, s.t. o(b)
= 3. Since ab = ba, o(a) and o(b) are relatively prime.

o(ab)= o(a) o(b)
=3x5=15
= 0o(G)
. G is cyclic group of order 15.

(Note : We shall prove the above result again with the help of Sylow's Theorems
in the next chapter).

Definition: Let H<G.Letg € G. Theng ' Hg is called conjugate of Hin G.
The set {g ! Hg | g € G} = cl(H) s called conjugate class of Hin G. As before,
we can determine the order of this conjugate class.

Theorem 2: Let H < G, G = finite group.

Th i) = 29 _
" o = Sy
Proof: Since N(H)< G
G = ,Ql N(H)x,

where N(H) x, N N(H) X =0 for some i #j

Let S = {xl_l Hx,,..., xt_1 Hx }
We show that S = cl(H)
Let g'HgeclH), geG
geCG = g € N(H)x; forsome i

= g=yx, ye NH)
= g'Hg = xl._1 yl Hyx,
=x'Hx, asyeNH) =y 'Hy=H

1

= g'HgeS
s cH)yc S
Clearly, S c cl(H)
: S = cl(H).
Also x[l Hx, = xj’l Hy;

1 gy _ 1
:>xl.xj H—Hxl.xj
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= X xjf1 e N(H)
= N(H)x, = N(H)xj

=>1i=]
o(S) =t
- o(cl(H))ZtZO(jv(—(G})I)).

Problem 13: Let H # G be a subgroup of a finite group G. Show that G
cannot be expressed as union of conjugates of H.

Solution: The number of conjugates of H in G is given by oG
o(N(H))
. G)
So o(Ux"Hx) < ol (o(H)-1)+1
( o(N(H)) )=

s%(o(H)—l)H as H < N(H)
o(G)

=D o)

+1

<o(G)-2+1 as@22
o(H)

=0(G)~1<0(G)

Thus, G cannot be written as union of conjugates of H.

Check Your Progress

1. Whatis conjugate class?
2. Whatrelation divides a group G into disjoint equivalence classes?

3. Whatis a normalizer of an element of'a group G?

5.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Let cl(a) denote the equivalence class of a in G then c/(a) is called conjugate
class.

2. Conjugate relation.

3. Normalizer of an element a € G is defined as N(a) = { x € G | xa for all
x € G}.



5.5 SUMMARY

e Let Gbeagroup, a, b € G. Then a conjugate relation ~on G is defined as
a~bs3ceGst.a=c' be.

¢ Conjugate relation is equivalent on G.

e Letcl(a) denote the equivalence class of @ in G then cl(a) is called conjugate
class.

e Normalizer of an element a G is defined as N(a) = { x € G | xa for all
x € G}.AlsoN(a ) <G thenN(a)= G a€ ZG).

5.6 KEY WORDS

¢ Conjugate: A mathematical value or entity having a reciprocal relation with
another.

¢ Equivalence relation: A relation ~ on a set is called an equivalence relation
if it’s reflexive, symmetric and transitive.

¢ Finite group: A finite group is amathematical group with a finite number of
elements.

5.7 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. Define conjugate relation.

2. Show that ofif a € Z( G) and x € c/(a) be any element, then x = yay for
some y € G.

3. Ifae Gand N(a ) < G then show that N(a ) = G< a € Z(G).

4. What is conjugate class?
Long Answer Questions

1. Prove that a group of order p? (p=prime) is abelian.
2. Find all the conjugate classes of the quaternion group.
3. Drive the class equation of G
4.

If H # G be a subgroup of a finite group G, then show that G cannot be
expressed as union of conjugates of /.
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UNIT 6 SYLOW’S THEOREM

Structure

6.0 Introduction

6.1 Objectives

6.2 Sylow's Theorem

6.3 Direct Products

6.4 Answers to Check Your Progress Questions
6.5 Summary

6.6 Key Words

6.7 Self Assessment Questions and Exercises
6.8 Further Readings

6.0 INTRODUCTION

This unit discusses about p-groups, Sylow’s three theorems and their applications.
In the field of finite group theory, the Sylow theorems are a collection of theorems
named after the Norwegian mathematician Ludwig Sylow. They provide a detailed
information about the number of subgroups of fixed order that a given finite group
contains. These theorems are a fundamental part of finite group theory and have
very important applications in the classification of finite simple groups. The ideas
developed are so useful that the plenty can be known about the nature of a group
by knowing only its order. Direct products of groups with its applications are
taken up at the end of the unit.

6.1 OBJECTIVES

After going through this unit, you will be able to:
e State Sylow’s Theorem and learn its applications
e [earn the Direct Products of groups and its applications

e Solve related problems

6.2 SYLOW'S THEOREM

Definition: A p-group is a group in which every element has order p” where
p =prime. Here p is same for all elements and » may vary.

The group K, = {1, (12)(34), (13)(24), (14)(23)} and the Quaternion group
are examples of finite p-groups. Here p = 2.

S, 1s not a p-group.
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Theorem 1: Let G be a finite group. Then G is a p-group if and only if o(G)
= pn_
Proof: Suppose G is a p-group. Let g be a prime dividing o(G). By Cauchy's
theorem 3 x € G s.t. o(x) = ¢. But o(x) = p" as G is a p-group.
. qg=p = q=p. So, pis the only prime dividing o(G). Thus o(G) = p".

Conversely, let o(G) = p" (p = prime).

Let x € G. Then o(x) | o(G) =p" = o(x) =p'.

.. every element of G has order which is some power of p. So, G is a p-group.
Remarks:

(/) Any finite p-group has non-trivial centre.

(if) A p-group may or may not be abelian.

Problem 1: Let G be a finite group such that for every pair a, b of non-
identity elements of G there exists T € Aut G such that T(a) = b. Show
that G is abelian.

Solution: Lete+#a, b e G. By hypothesis T(a) = b for some T € Aut G. So
o(T(a)) = o(a) = o(a) = o(b).

= every non-identity element of G has same order n. every non-identity
element of G has order prime p = G is a p-group.

= Z(G)# {e} > e#ac Z(G). Let x be any element of G. Then3 T
€ Aut G such that 7(a) = x. Since T(Z(G)) € Z(G) = x=1(a) € Z(G) =
G C Z(G).

= G =Z(G)= G is abelian.

Problem 2: Let G be a finite cyclic p-group. Show that if H and K be any
two subgroups of G then either H c K or K < H.

Solution: Let G =<a >, then o(G) = o(a) = p" for some prime p.
Let H be a subgroup of G, then H is cyclic.

Let H=<dad">.

Letd = g.c.d. (m, p")

Then d = mx + p"y for some integers x and y

Now ad ="y = g™ P = (@Y e H [as o(a) = p"]
Thus <a’>cH

Again as dlm, m=dq

So am:(ad)qe<ad>

or that H=<a">c<a'>

and hence H=<a’>where d|p"



and so H= <ap">

Let K be another subgroup of G, then K =< o > .Suppose i > kand leti=k+
t

where ¢ > 0 is an integer
i p
NOW p pk+t _ (apk ) c K

which implies H = <api> cK

Iftk>i,then Kc H

which proves the result.

Problem 3: I G is a finite non abelian p-group then show that p* | o(Aut G)
Solution: Since G is a p-group. o(Z(G)) > 1

Suppose o(G) = p" and let o(Z(G)) = p™

Since G is non abelian, 0o(Z(G)) < o(G), thus m < n and also m > 1.

Thus o[ij=pn'm, n-mz21
Z(G)
It n—m=1 then 0[ G ]=p=> G is cyclic.
Z(G) Z(G)
= Gis abelian
which is not true. Hence n — m > 2
. G G
— =1 —|=0((G
Again 726 (G):)O(Z(G)J o(1(G))
= p? divides o(I(G))
and as I(G) < Aut G we find p?| o(Aut G).

We now prove the converse of Lagrange's Theorem for finite abelian groups.

Theorem 2: Let G be an abelian group of order n. Then for every divisor m
of n, G has a subgroup of order m.

Proof: We prove the result by induction on n. Whenn =1, G= {e} and so result
is clearly true for n = 1. Assume it to be true for all groups with order less than
o(G). Leto(G)=n,m | n, m> 1. Let p be a prime dividing m. So, p | n=0(G).
By Cauchy's Theorem 3 x € G s.t. o(x) = p. Let K = <x>.

Then o(K)=o(x)=p. Since G is abelian, K is normal in G.

Now O[EJ =2 <n. Also G is abelian. Let m = pm,.
K p K
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By induction hypothesis 3 subgroup % of % s.t. 0[%] =m. H<G.

o(H) = o(K)ym, = pm, = m
So, result is true in this case also. Hence by induction, theorem is proved.
Cor.: Converse of Lagrange's theorem holds in finite cyclic groups.

Remark: In case of finite cyclic groups we notice its not only that converse of
Lagrange's theorem holds but for each divisor of o(G) there exists a unique
subgroup. This is, however, not essentially true in finite abelian groups. For instance,
in K, = {e, a, b, c} there are three subgroups of order 2.

Sylow p-subgroups

Let p be a prime s.t. p" divides order of a group G and p™*! does not divide it.
Then a subgroup H of G s.t. o(H)=p" is called a Sylow p-subgroup of G or p-
Sylow subgroup of G.

We now discuss three theorems due to Sylow called Sylow's theorems. First
theorem shows the existence of a Sylow p-subgroup of G for every prime p
dividing o(G) while second theorem shows that any two Sylow p-subgroups of
G are conjugate. The third theorem gives the number of Sylow p-subgroups of
G.

Our next theorem is a partial converse to Lagrange's theorem.

Theorem 3 (Sylow's First Theorem): Let p be a prime and m, a +ve integer
s.t. p™" divides o(G). Then 3 a subgroup H of G s.t. o(H) = p™.

Proof: We prove the theorem by induction on o(G). Result is vacuously true
when o(G) = 1. Assume it to be true for all groups with order less than o(G). Let
p" | o(G). If K is a subgroup of G s.t. K# G and p™ | o(K), then by induction
JdH<Ks.t.,o(H)=p". H< K= H<G. Soresult holds in this case. Assume
p" does not divide order of any proper subgroup of G. Consider class equation
of G.

G) = o(Z(G)) + o(G)
o(G) = o(Z(G)) W;G)O(N(G))

a ¢ Z(G) = N(a) # G = p" + o(N(a))

But P o(G) = p"| % o(N(a))



o(G)

oN@) for all a ¢ Z(G)) as p"" + o(N(a))

Pl

N o(G)
4 M;(G) o(N(a))

= plo@)- Y 29 = oza)

a2 2G) 0N (@)
= dxeZ(G)st. olx)=p
Let K=<x>c Z(G) = Kisnormal in G.

Now 0o(G/K) < o(G) and p" | o(G) = o(G/K). o(K), p" + o(K) and thus
P p™ | o(G/K). (Notice in case m = 1, the result follows by Cauchy's theorem).

By induction hypothesis 3 a subgroup % of % s.t. 0[%] =pmL

Thus result is true in this case also.
Hence by induction the theorem follows.

Remark: Suppose G is a group of order 2°.3%.5 then Sylow's First theorem
says that G has at least one subgroup each of order 2, 22,233, 32 5. But the
theorem does not say anything about the group G having a subgroup of order 6,
10, 15 or any other divisor of o(G) that has two or more distinct prime factors.

In view of theorems 2 and 3 above we observe that converse of Lagrange's
theorem holds for all finite abelian groups and all finite groups of prime-power
order.

Cor.: If pis a prime s.t. p" | o(G) and p"*!' + o(G), then a 3 Sylow
p-subgroup of G.
Proof: Take m = n and use the above theorem.

Thus if o(G) =23.3%.5, any subgroup of order 8 will be a Sylow 2-subgroup
and any subgroup of order 9 will be a sylow 3-subgroup of G and so on.

Remark: Sometimes the statement of this corollary is taken as Sylow's first
theorem. In fact, another (more general) version of the theorem would be

If G a finite group of order n = p*q (k > 1), where p is a prime and q, a
tve integer; (p, q relatively prime) then for each i, 1 <i<k, G has a subgroup
of order p'.
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Double Cosets

Definition: Let H K< G. Leta, b € G. Define arelation ‘~’ on G as follows:
a~bs3IJheH ke Kst a=hbk

It can be easily shown that ‘~’ is an equivalence relation on G. So, it divides
G into disjoint union of equivalence classes. Equivalence class of a € G is given

by
cl(a)

={xeGla~x}

{hak|h € H, k € K}
HaK, called double coset of H and K in G.

G = vuclla)= vHak

Define f: HaK — HaKa ' s t.,
f(hak) = haka™ forallh € H, k € K
Clearly, f1s well defined as hak = h'ak’

= haka™' = Wak'a™

fis 1-1 as f(hak) = f(h'ak’)
= haka™' = Wak'a™
= hak = h'ak’

Let haka™' € HaKa' = hak € Hak and
£ (hak) = haka™
. f1s both 1-1 and onto.
Thus, o(Hak) = o(HaKa™"), (if H, K are finite)

_ o(H)o(aKa_l) _ o(H)o(K)

o(HnN aKa'l) o(HnN aKa'l)

If G is a finite group, then

o(G) = Y o(HaK) = Z—O(H Jo(K)

o(H naKa™")

a

We are now ready to prove Sylow's second theorem.

Theorem 4 (Sylow's Second theorem): Any two Sylow p-subgroups of a
finite group G are conjugate in G.

Proof: Let P, O be Sylow p-subgroups of G. Let o(P) =p" = o(Q) where p"*"
+ o(G). Suppose P and Q are not conjugate in G.

ie., P+#gQg ' foranyg e G



By the discussion done above
o(PxQ) = — 2P0
o(PNx0Ox)
Since, PNxOx'<P
oP N xOx N =p" m<n
If m=n,then P xQx ' =P
= P c xQx!
= P=x0x"as oxOx") = 0o(Q) = o(P)
which is a contradiction.
. m <n and thus o(PxQ) =p*"™, m<nforallx € G
= o(PxQ) =p"! (p" ™) = multiple of p"*!

Thus o(G) = Y 0(PxQ) = multiple of p""!

"1 RH.S. = p™! | 0(G), a contradiction
P=gQg ! forsome g € G.
Before we prove Sylow's third theorem, we prove

Lemma: Let P be a Sylow p-subgroup of G. Then the number of Sylow p-

o(G)

subgroups of G is equal to .
groups of q SN P)

Proof: We know that

o(cl(P)) = _oG)

o(N(P))
Since cd(P) ={0|0<G,Q0=gPg' ge G}
= set of all Sylow p-subgroups of G,
the number of Sylow p-subgroups of G is _o6) .
o(N(P))

Theorem 5 (Sylow's Third Theorem): The number of Sylow p-subgroups of
G is of the form 1+ kp where (1 + kp) | o(G), k being a non-negative integer.

Proof: Let P be a Sylow p-subgroup of G.
Let o(P) = p". Now G = Y PxP

= U PxPuU PxP
xeN(P)xeN(P)
x € N(P) = Px =xP = PPx = PxP
= Px = PxP
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UPYP = UPx = N(P)
xe N(P) xe N(P)

as P < N(P) and union of disjoint right cosets equals the set
x & N(P) = Px#xP = xPx' # P
= o(P N xPx ) =p" m<n
(as in Sylow's second theorem)
= o(PxP) = P""™ m <n

o(G) = o(N(P))+ Y, o(PxP)

xg N(P)

= oN(P)+ Y p""

xg N(P)
2n—m n+l

SCO RN S P , t=integer

o(N(P)) o(N(P)) o(N(P))
Since L.H.S. = integer, p"'! = 7= integer

Y s

" Pt = r.o(N(P))
Again as P < N(P)

o(P) [ o(N(P))
= p" | o(N(P))
= o(N(P)) = p"u
Pt =r o(N(P))
= pt=ru
= plru
If p | uthen p"! | o(N(P)) | o(G) = p"*' | 0(G), a contradiction.
Loplr = L = integer = L = integer k= L.
p u p

o(G) _ I+ p t

=1+p— =1+Kk
oN(P)  o(N(P) u i
o(G) _
By above lemma, =number of Sylow p-subgroups of G.
o(N(P))
.. The number of Sylow p-subgroups is of the form 1 + ip = o(G)
o(N(P))

= (1 +kp) | o(G).




This proves the theorem.
Note: If o(G) =p"q, (p, g) = 1 then the number of Sylow p-subgroups is
1 + kp, where (1 +kp) | p"q
= (1+hkp)|qas (1 +kp, p") =1
Cor.: If Pisthe only Sylow p-subgroups of G, then P is normal in G and conversely.
Proof: By Sylow's third theorem
0(G)
o(N(P))
Since NP)L G
NP)=G

= Pisnormal in G.

=1 = o(G) = o(N(P))

Conversely, if Sylow p-subgroup P is normal in G, then
NP) =G = o(N(P)) = o(G)
0(G)
o(N(P)
= The number of Sylow p-subgroups of Gis 1
= Pisthe only Sylow p-subgroup of G.

Lemma: Let P be a Sylow p-subgroup of G Let x € N(P) s.t. o(x)=p'. Then
xeP.

Proof:Let  o(P)=p", p"*! 4 o(G)

Now (Pxy' = Px!' = pe=Pp
[P is normal in N(P) and x € N(P)]
= o(Px) | p'

= o(Px)=p,j>o0

Letj>0. g =<Px>< NI(DP) s.t. o(K) =p/
Since (K) < N}(DP) , K = % where K < N(P)
= iy = oK) _ oK)
Pk =T =
= o(K)=p", j>0
But o(K) [ o(N(P)) | o(G)

— pn+j | o(G), j >0, a contradiction
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“j=0 oPx)=p =1
= Px=P=xelP.

Theorem 6: Every p-subgroup of a finite group G is contained in some Sylow
p-subgroup of G.

Proof: Let H < G s.t. o(H) =p™ i.e. H is a p-subgroup of G.
Let S = set of all Sylow p-subgroups of G.
Then oS)=1+kp
Define arelation ~on S as follows:

ForP,P,e §S,letP ~P,<3dxe Hst P/ = xsz’l. It can be shown
that ~ is an equivalence relation on S'. For P € S equivalence class of Pin § is
given by cI(P) = {xPx' | x € H}.

If N,(P) = {x € H|xP = Px} then N,(P) < H.

o(H)

Thus o(cl(P)) = (N (P) p’, s>

0.

Suppose H is not contained in any Sylow p-subgroup of G. Then H < P.
S dsomex e Hst.x ¢ P
If xPx' = P, then x € N(P) and o(x) = p' [as xeH, o(x) | o(H)]

= x € P byabove lemma, which is not true

Hence xPx'#P,x e H

= P, xPx! are distinct members of cI(P) = o(cl(P)) > 1
o o(cl(P)=p’,s>0 = o(cl(P))=multiple of p

This is true forall P € §

Since S =uclP)

o(S)= ZO(cl(P)) = a multiple of p
= 1+ kp =amultiple of p, a contradiction.
Hence H is contained in some Sylow p-subgroup of G.

Problem 4: Show that the number of Sylow p-subgroups ofSp, where p is
a prime, is (p — 2)!
Solution: Now o(Sp) =p!

The order of Sylow p-subgroup is p as p? does not divide p!

Letf=(123 ... p). Then O( /) = p and 0(<f>) = p. Any cycle of length
pin S, generates a group of order p. The number of cycles of length p is (p
- 1)

Since any element other than identity in a group of order p is of order p and
generates the same group of order p.



The number of Sylow p-subgroups ofS is (p=D! =(p-2)!
p-

Forexample,inSs5,<(12345)>,<21345>,<(23145)>,<(23415)>,
<(23541)> <(13245)>are 6 Sylow 5-subgroups of order 5 in S;.

Problem 5: Show that all Sylow p-subgroups of G are isomorphic.

Solution: Let P and O be two Sylow p-subgroups of G. Then O =x"" Px for
some x € G.

Define0: P — QOs.t.,
0(p)=x"'px, pe P.

Then 6 is an isomorphism. So P = Q.

Problem 6: Let o(G) = 30. Show that
(1) Either Sylow 3-subgroup or Sylow 5-subgroup is normal in G.

(i1) G has a normal subgroup of order 15.

(iti) Both Sylow 3-subgroup and Sylow 5-subgroup are normal in G.
Solution: o(G)=30=2x3 x5

The number of Sylow 3-subgroups is 1 + 3kand (1 +3k) | 10 = k=0 or
3

If k=0, then Sylow 3-subgroup is normal.

Let k# 0, then k= 3. This gives 10 Sylow 3-subgroups H, each of order 3
and so we have 20 elements of order 3. [Notice (for i # ) o(H NH ) | o(H)) =
3= oHNH ) =1 only and so these 20 elements are different. Each H; has
one element e of order 1 and other two of order 3. a € H. = o(a) | o(H, ) 3
= o(a) =1, 3].

The number of Sylow 5-subgroups is 1 + 5k" and (1 + 5k') |6 = k' =0
or 1.

If £ = 0. Then Sylow 5-subgroup is normal.

Letk'#0. Then k' = 1. This gives 6 Sylow 5 subgroups each of order 5 and
we get 24 elements of order 5. But we have already counted 20 elements of order
3. Thus we have more than 44 elements in G, a contradiction. So,. either k=0
or k' =0.

i.e., either Sylow 3-subgroup or Sylow 5-subgroup is normal in G.
Which proves (7).

Let H be a Sylow 3-subgroup of order 3 and K, a Sylow 5-subgroup of
order 5.

By (i), either H is normal in G or K is normal in G.

In any case, HK < G, o(HK) = 15 as o(H N K) divides o(H) = 3 and o(K) = 5
= o(HN K)=1. Since index of HK in G is 2, HK is normal in G. This proves (ii).
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Suppose, H is normal in G, K is not normal in G. By (i) G has 6 Sylow 5-
subgroups and so 24 elements of order 5. But o(HK) =15 = HK is cyclic (See
problem 13 ahead) = HK has ¢(15) = 8 elements of order 15. Thus G has 24
+ 8 =32 elements, a contradiction.

.. Kis normal in G.

If H is not normal in G, they by (i), G has 10 Sylow 3-subgroups and so 20
elements of order 3. From above HK has 8 elements of order 15 and K has 4
elements of order 5. This gives 20 + 8 +4 =32 elements in G, a contradiction.

.. Hisnormal in G. So both H and K are normal in G.
This proves (iii).

Problem 7: Let o(G) = pq, where p, q are distinct primes,p <q, p + q— 1.
Show that G is cyclic.

Solution: The number of Sylow p-subgroups is 1 + kp and (1 + kp) | ¢ =
1+kp=1o0rgq,1+kp=1= Sylow p-subgroup is unique = Sylow p-subgroup
Hisnormal in G.

l+kp=g=kp=q—1= p|q—1, acontradiction.
Thus 1 + kp # q and so Sylow p-subgroup is normal.

The number of Sylow g-subgroupsis 1 +k'qand (1 +k'q) |p=>1+kqg=
lorp

If1+kg=p,thenk'g=p—-1=¢q|p—1=g<p-1<p,acontradiction.
1 +k'q =1 = Sylow g-subgroup K is normal in G.

o(H)=p, o(K)=¢q, H" K= {e}, Hisnormal is G, K is normal in G.
[x €e HN K = o(x) | o(H), o(x) | o(K) = o(x) = 1]

Thus hk=kh forallh e H ke K

Let H=<a>, K=<b>(Groups of prime order are cyclic)
o(a) = o(H) =p, o(b) = o(K) = ¢

Now ab = ba, (o(a), o(b)) = (p, q) =1

o(ab) = a(a) o(b) = pq = o(G)
= Giscyclic.

Problem 8: (Wilson's Theorem): Using Sylow's theorems show that (p — 1)!
= —1(mod p) for any prime p.

Solution: Consider S, then order of S, is pp—-Dp-2)..2.1

The number of Sylow p-subgroups of order p in Sp are of the form 1 + kp, where
kis anon -ve integer. Since each Sylow p-subgroup is of order p, we get (p —
1) elements of order p. Again, any two groups of order p have only identity in
common and thus the number of elements of order p in S, is(1+kp)(p—1).Also
any element of order p in Sp is a cycle of length p and the number of cycles of
length p in S, is(p—1)!



So A+kp)p-1)=(@-1)!

ie., (» — D! =—-1(mod p).

Problem 9: Let p be a prime dividing o(G) and (aby = &b’ for all a, b €
G. Show that

(i) Sylow p-subgroup P is normal in G.
(@) 3 a normal subgroup N of G s.t.
PN N={e} and G=PN
(@ii) G has non-trivial centre.
Solution: Let p" | o(G), p"*! + 0o(G)

Let H={xe G| =¢}

Hzopas e’ =e=ecH

Let X,y e H= (upy' = "7y =ee=e
=xy'leH
H<G

Let g be a prime dividing o(H).

Then xeH st o(x) =¢q

But xeH=ox)|p"=q|p" =q=p

- His a p-group. o(H) = p", m < n.
Let P be a Sylow p-subgroup of G.

Then o(P) =p". Letx € P = =
>xeH=>PcH=o0oP)|oH)y=p"|p"=>n<m . . m=n
So, o(H) = p" = o(P)

= H=P.
Thus H is the only Sylow p-subgroup of G and so is normal in G.
This proves (i)
Define 0:G— Gsit.

o) =+

Then fis a homomorphism.

=~ [mG isnormal in G [AG) = ImG]
Ker

Since xeKerfd < Ax)=-e

n

&P =e
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Sxe H=P
P=XKer 0
Let N = ImG which is normal in G.

(as Ax) eN,g e G =g '@ng=g '+ g

= (g'xg)"" =g 'xg) € N)
Let xePNN=>xeP,xeN

n

= =e, x=Qy) =y

2
= y'=e=o0()=p,r<n

as p"! ¥ o(G)

we get yW=e r<n

Also —=N = = o(N)
O

= 0o(G) = o(P). o(N)
But o(PN) = o(P) o(N)
= 0o(G) = o(PN)
= PN=G
This proves (if).
Letz € Z(P),z#e. Letg € G.
Since G=PN, g=xy,x € P,y e N
Also Pisnormal in G, Nis normal in G, PN N = {e}
= x'y'=yx" forallx' e P,y' e N
Now zg= z(xy) = (zx)y
= (xz)y asz e Z(P)
= x(zy)=x(yz) aszeP,yeN
= (xy)z=gz forallge G
z € Z(G)
Z(G) # {e}

which proves (ii7).



Problem 10: Show that there is no simple group of order 144.
Proof: Let G be a group of order 144 = 2* x 32, and suppose G is simple.
The number of Sylow 3-subgroups of Gis 1 +3kand (1 +3k) |16 = k=

0, 1, 5. If k=0, then Sylow 3-subgroup is unique and normal, which is not
possible.

If k=1, then 3 4 Sylow 3-subgroups of G and if P is any one of these then
as 29
o(N(P))

of G with index 4 which is not possible in view of problem 20 above.

If k=35, then 3 16 Sylow 3-subgroups each of order 9 in G. Let H|, H,, be
any Sylow 3-subgroups. Since H;, " H, < H,, o(H, " H,) |9 = o(H, N H,)
=1,3 0r9.If o(H, " H,) =9, then o(H, " H,) = o(H,) = o(H,), > H, = H,
N H, = H,, a contradiction. If o(H, N H,) = 3, then H, N H, is normal in H,
and H,. Since N(H, N H,) is the largest subgroup of G in which H, N H, is
normal.

=4 =number of Sylow 3-subgroups, we find N(P) is a subgroup

H c NH, nH,), H c NH, N H,)
=> HH,cNH,"H)cG
o(Hy) o(H,) _
o(Hy " H,)
o(N(H,; m H,)) = 27 and divides o(G) = 144

o(N(H, " H,)) = 36, 48, 72 or 144

But then [G : N(H, N H,)] =4, 3, 2 or 1 which is not possible by problem
20.

Again as o(H H,) = 27,

o(H " H,) =1
L.e., any two Sylow 3-subgroups of G intersect trivially. This gives 128 elements
of order 3’ (=1 or 2). Since Sylow 2-subgroup is of order 16 and not normal,
there are at least 16 elements of order 2’ (i = 1, 2, 3 or 4) and one identity
element. So, we get 145 elements in G, a contradiction.

Showing that G is a simple group.
Problem 11: Let p be a prime dividing o(G). Show that

(?) If K is normal in G and P is a Sylow p-subgroup of G, then P N K
is a Sylow p-subgroup of G.

(@) % is a Sylow p-subgroup of %

(iii) Every Sylow p-subgroup of % is of the form % where P is a Sylow
p-subgroup of G.
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Sylows Theorem Solution: () Suppose P N K is not a Sylow p-subgroup of K. Then 3 Sylow
p-subgroup Q of K s.t., PN K < Q < R where R = Sylow p-subgroup of G.

Since P and R are Sylow p-subgroups of G,
NOTES P = xRx" for some x € G
xOx 1 < x(K n R)x!
c (xKx n (xRx)
= KN PasKisnormal in G
cQ
But o(xOx™!) = 0(Q) = xOx ™! = 0, a contradiction.
.. P K is a Sylow p-subgroup of K.
(i) Let p" [ o(K), p"*" + o(K)
Then o(P N K) = p™ by (i)

But o[ﬁJz oPYo(K) _ _oP) _ p" _ um
K o(PNK)o(K) o(PNK) "

n m n—m G
Now p"o(G), " [ o(K) = 17" o[ {
Also p"™! + o(G/K)

PK . G
o— Syl -sub f—.
— isa Sylow p-subgroup of —-

(#ii) Let % be a Sylow p-subgroup of %

Let p" | o(G), p"' + o(G)
P" oK), p" + o(K)
Let oK)=p"v, (p,v)=1

o(G) =p"u, (p,u)=1

. pnfm|0(G/K), pnferl * 0[%]

= order of Sylow p-subgroup of % isp"™"

H — n—m
j —_ =
(i)

= o(H) = oK) p"" =p'v, (p,v)=1

Self-Instructional
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Let P be a Sylow p-subgroup of H then P is also a Sylow p-subgroup
of G.

Clearly, PK c HasPc H,Kc H

"p"v
and o(PK) = —(:)((Z):w(llj)) = %
(as by (i) P n K is Sylow p-subgroup of K)
~o(PK) =p'v, (p,v)=1
= o(H)
.. H=PK

= % = % where P = Sylow p-subgroup of G

This proves (iif).

Problem 12: If H is normal in G and P is a Sylow p-subgroup of H then G
= N,(P) H.

Solution: Letx € G. Thenx ! Pxis a Sylow p-subgroup of H as H is normal
inGand Pc H.

Thus, x!Px= )f1 py for some ye H
= yx ! Pxy'=P
= yx! e N(P)
= x=@Dye N, (P)H.
= G = N, P)H.
Sylow Groups in Sp*

We now give amethod of constructing Sylow p-groups inductively in the symmetric
groups Sp*.

Suppose p = prime s.t. p” | n! and p”*! + n!. Then r = Z{
j=1

i/} , Where [x]
»

represents greatest integer not greater than x. (This result can be found in any
book on Number theory).

In particular, if n = p¥, then » = p* ! + p*2 + ... + 1 we denote r by n(k) to
mean the highest power of p dividing p*!.

When k= 1, then clearly p | o(S,) = p! and P’ 4 p!
@@sp’lp! =plp-1..21

=>plp-r), 1<r<p-1

= p < p—r, acontradiction)
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" order of Sylow p-subgroup in Sp is p and group generated by (1 2...p) is
a Sylow p-subgroup. So, We have constructed Sylow p-subgroup when k= 1.
Assume that we have constructed it for &k — 1. Consider Sp*.

Divide the set of p* letters 1, 2,...p" into p sets each consisting of p* ! letters
as follows

(1, 2,...p1, !+ 1, 205N
A =Dy L P p=phy
Let
o=(1p"" +1..p-DP "+ D@ +2.(p-1) P +2).. (" 2pF
)
= product of p*! disjoint cycles each of length p.

1

Note, first cycle in ¢ consists of first letter from each set, second cycle has
second letter from each set and so on.

Clearly 6” = [ as disjoint cycles commute.

Let A={teSprf|t(@)=iforalli>p!}
Tedie,d#d
Let 1,7 € A= 17 (i)=iforall i > p<!

= 1t € A < SpF

But T € 4 = 1 is permutation on p*' letters, and so 4 = Sp¥!.

By induction hypothesis Sp*! has Sylow p-subgroup. Thus 4 has Sylow p-
subgroup P,. o(P,) = p" D=1+ .+ P2

Let P, = c P, o, P, = o’ P, 62, Pp = o P, o ¥,

Each P, < Sp* s.t. P, = P, (where x € P, is mapped into c'xc ™).

. o(P)=o(P)= "D Also o takes letters of first set into second set,

letters from second set into third set and so on. So, T € A = oTo! consists of
letters from second set as T € 4 means (i) =i for all i > p*"!. Similarly 6*t6~

2 will consist of letters from third set on. Therefore, P, P,,..., Pp_] will have
disjoint permutations and so commute with each other. Hence 7= P, P2...Pp <

Sp*.

Also o(T) = o(P)) o(P,) ...o(Pp)
= o(P)) o(P)) ...o(P)) (p times)
=p p(n(k-1)) — p1+n(k—1)

Let P=1{dt|teT,0<j<p-1}
=<oc>T

Since cTo! o(P, ...PP)G’1

= (o Plc’l) (o chs’l) ... (c Ppcs’l)



= P2P3...PPP] = P]Pz...Pp =T
= ol =To
=><o>T=T<oc>

s P<Sp

Also <o >n T= {1} as s takes first set into second set while 7 takes first
set into first set,

o(P) = o(<c>)o(T)

=pp”" (k=1)
_ pp(n (1)) +1

— pp(ltpt..+ph2)+1

— plept.+phl p"®

So, P is required Sylow p-subgroup of G.

Problem 13: Find a Sylow 3-subgroup of S,

Solution: We urge the reader to first go through the discussion on the previous
two pages. Let P, = {/, (123), (132)} be a Sylow 3-subgroup of S.

Dividetheset {1, 2,3,4,5,6,7,8,9} into 3 sets as follows

Let
Then
Let

Let
Let
Then
Also

{1, 2,3}, {4, 5,6}, {7, 8, 9}

o = (147)(258)(369)

o =1

P,=0c Pc ' = {I, (456), (465)}
P,=c>P,c?= {1 (789), (798)}

T=P,P,P,, oT) =3

P=<oc>T
o(P) = 3*
n2)=1+3=4

= Pis a Sylow 3-subgroup of S,.

Problem 14: Let G be the group of n x n invertible matrices over the integers
modulo p. p a prime. Find a p-Sylow subgroup of G.

Solution: Let A be an n X n matrix in G. Since A4 is invertible, rows of 4 are
linearly independent over the field F of integers modulo p. Since first row of 4 is
linearly independent, it is non zero. It can be chosen in (p" — 1) ways. Second row
should not be a (a0 € F) times the first row. So, second row can be chosen in
(p" —p) ways. Third row should not be o times first row + 3 times second row
(o, B € F). So, third row can be chosen in (p" —p?) ways as o, f can be chosen
in p* ways. In this way, last nth row can be chosen in p" — p" ! ways.

oGy =@"-D@E"-p) ..0"-p"")

Sylow’s Theorem

NOTES

Self-Instructional
Material

119



Sylow’s Theorem

120

NOTES

Self-Instructional
Material

= p! 2D (@ ) T = 1) .. (p - 1))
n(n-1)

=pr 2 (@"-D..(-D)

n(n—1)
Since (p, (p' — 1)) = 1, order of Sylow p-subgroup of Gis p 2

{ 1
Let P = . {| entries above diagonal from F'}
(0] 1
PxopasleP
Also
1 e | [ ]
O I o
A, Be P=> A= | , B= |
0 1 . 0 1
I
B 1 o _p
0] 1
P<G

Let A € P. The first row in A can be chosen in p" ! ways, second row in p"
2 ways and in this way (n — 1)th row in p ways and last row is fixed.

So, oy =p"tp2 .. p

n(n—1)
2

= ittt =

.. P1is Sylow p-subgroup of G.

6.3 DIRECT PRODUCTS

The reader is well acquainted with the idea of product of two sets as a set of
ordered pairs. We explore the possibility of getting a new group through the product
of two groups. Let G,, G, be any two groups.



Let G=G, x G, = {(g, &) g € G}, g € Gy}.

What better way could there be than to define multiplication on G by
(g, 8) &g, =(g¢ 8¢, That G forms a group under this as its
composition should not be a difficult task for the reader. Indeed (e, e,) will be
identity of G where e,, e, are identities of G, and G, respectively. Also (g, g,)"

=g

We call G = G, x G, direct product or external direct product (EDP) of
G, G,.

Again if G,, G, are abelian then so would be G, x G,,.

In a similar way, we can define external direct product G, X G, x ... x G, of
arbitrary groups G, G,..., G, as

Gl XX Gn = {(gla-"a gn)|gl € Gl}
where compostion is component wise multiplication.

If compositions of the groups are denoted by + we also sometimes use the
notation

G,® G,®..8©G, to denote the external direct product.
Let G = G, x ... x G, = direct product of G,,..., G,.
Define H, ={g, e)..., e} | g, € G, e, = identity of G}
H, = {(e;, g, €5.... ¢,) | g, € G,}.
H = {(e,eye5..8) g €G}
We show that /| is normal in G.
H, # ¢as (e, e,,..,e) € H,
Let (g,, €,,..., ¢,) (&'}, €,,.. €,) € H|
Then (s €50es €,) (€15 €gonns en)’1
= (g, €5es €,) (g]’l, €y,...€,)

= (glgl_l, e,,...e)) € H,

Thus H <G
Let g = (gqeeenn g)eG
x = (x, e,,..., €) €H,
Then gxg ! = (gyseer &) (x5 €505 €,) (g]’l,..., gn’l)

= (g,x, gl’l, ey,...e,) € H,
. H isnormalin G.

Similarly, each H,is normal in G forall i = 1,..., n.

Let g=(gyn8) el
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Then g = (g s €) (e, 85, €5..¢)...(€, €5, €, |, &) €
H H,..H,

Suppose g =h hy.h, =W N, 0, b, B € H,

Then (g €yen @) o (eppe e, 1, 8) = (g 5es €).(€58, 1, &)

= (& g,) = (g'1--8,)

= g =g foralli=1,..,n

= h.=h foralli=1,.,n
So, g € G can be written uniquely as product of elements from H,...., H,,.
We summarise this through the following definition.

Let H, ,..., H, be normal subgroups of G. G is said to be an internal direct
product (IDP) of H,,..., H, if G = H H,... H and each g € G can be written
uniquely as product of elements from H,,..., H ..

Example 1: (@) Consider the groups Z,= {0, 1}, Z, = {0, 1,2} under addition
modulo. Here Z, x Z, = {(0, 0), (0, 1), (0, 2), (1, 0) (1, 1), (1, 2)} will form
a group under element wise multiplication (addition). In fact it is a cyclic group
generated by (1, 1).
Indeed’ 2(17 1) = (17 1) + (17 1) = (16_)21, 16_)31) = (Oa 2)7
(LD =(, D)+, 1)+ (1, 1)=(1,0) etc.

We further note that since two cyclic groups of same order are isomorphic, we

must have Z, X Z, = Z,.

On the other hand one can show that Z, x Z, is not isomorphic to Z,. In fact
Z, < Z,is not cyclic (whereas Z, 1s). If Z, x Z, is cyclic then it has a generator
whose order should be same as o(Z, x Z,) =4. But no element of Z, x Z, has
order 4. Notice, 2(1, 1)=(0, 0) i.e., order of (1, 1) is less then or equal to 2 etc.
Hence no element can be generator of Z, x Z,. One can show thatZ, x Z, =
Z,  iff n and m are relatively prime.

(b) Letusnow consider Z x Z. We know Z.1s cyclic, generated by 1. Would
Z. x Z.be cyclic? Suppose it is and let (a, b) be a generator of Z X Z.

Since (1, 1) € Z X Z, 3 an integer m s.t., (1, 1) =m (a, b)
= ma=1,mb=1, m,a,b integers

giving the possibilitiesa=+1,b=+1. Now (1, 2) € Z x Z but for no integer
t, we can have (1,2)=#ta, b) (a==x1,b=%1)

Hence Z x Z is not cyclic.

Theorem 7: Let H,, H, be normal in G. Then G is an IDP of H, and H, if
and only if

(i) G=H,H,
(i) H, " H, = {e}.



Proof: Suppose G is an IDP of H, and H,. Let g € G.
Then g=hh, h € H, h, e H,

Then Gc HH, BuwtHH,cG
= G=HH,
Let geH NnH,—geH,geH,

. g=ge=egiswritten in 2 ways as product of elements from /, and H,.
g=e=> H NnH,= {e}.
Conversely, let G = H H, and H, N H, = {e}
Letge G=>ge HH,=>g=hh, h e H,h, € H,
Letg=hh,=h" N, h,h e€H,h,h,eH,
= h "W, =hh, € H N H, = {e}
= h =h,h,=H,
. GisanIDP of H, and H,.

Example 2: Let G=<a >be of order 6. Let H= {e, a’, a*}, K= {e, @’} then
H and K are normal (G is abelian) subgroups of G. H N K = {e}.
HK= e, ed’, d’e, a’a’, a'e, a*d’ }
= {e, at, &, at, @, a} =G
Hence G is IDP of H and K

Theorem8: LetH,, H,,..., H be normalin G. Then G is an IDPof H |, H,,...,
H, if and only if

() G=HH,.H,

(i) H"HH,. H  H,..H ={e}

foralli=1,..n
Proof: Suppose GisanIDP of H,...., H,. Then (i) follows from the definition of IDP
Let geH nH..H H., . H
Then g=h, h,e Handg=hh,.h  h.."h, hj € H

= g=ee..h ..e

1
g=hhy...h eh, ..h
Since this representation of g should be unique we gete=h,,e=h,,..., h,=
e,...

n

or that g = e, which proves the result.
Conversely, letg € Gtheng e H,... H = g=h,... h , h, € H.
We show this representation is unique.
Let g=h'| .. h
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By(ii)Hl.ﬂHj: {e} for all i #j because if x € H,NH,
Thenx € H, erj.(/';ti)
X € H1.:>x € H, H/ H  H., .. H
as X=e..X..ee..e
> xeHnH ..H H, . H={e}
Also H.is normal in G, H] isnormal in G for all , j, thus hihj = hjhl. forall i
#J

I hy=h s ",
= h, =" k) (R . (h, ', DK,
coh T =R e (h ' h ) eH, . H  "H = {e}
hn - h’n

Similally 2, =h' ., by =W
Hence G is an IDP of H,......., H .
Remark: If G is an IDP of H,, H,......., H then H, N H] ={e},i#].

We now show that IDP of subgroups of G is isomorphic to their external direct
product (EDP).

Theorem 9: Let G be a group and suppose G is IDP of H ..., H,. Let T be
EDP of H,,..., H . Then G and T are isomorphic.

Proof: Define 6: T — G, s.t.,

Ois well definedas  (h,..., h)) = (W' |,..., I'))
= h,=h' foralli

= (hpe h) (W (s B')
as hl.hj = hjh[
h'ih']. = h'/h'i foralli#j
= Ah,..,h) AN ,... 1)
Ois 1 —1asAh,,..,h)=a&n .., 1)

= h,= NI’ foralliby definition of IDP
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= (hy,.. h) =, 1)
fisontoas ge G=>g = h...h, h € H,
= &hy,.s h), (hy,yh) e T
. @is an isomorphism. NOTES

Hence G=T.
Problem 14: Let A, B be finite cyclic groups of order m and n respectively.

Prove that A x B is cyclic if and only if m and n are relatively prime.

Solution: LetA=<a> B=<b>
o(4) = o(a) =m, o(B) =0o(b) = n

Suppose 4 x B is cyclic.
Let A X B=<(x,y)>,
o(4 x B) =mn = o(x, y)

xeAd,yeB

Let g.c.d. of m and n be d.

™ and Z arerelatively prime integers.

(

Consider (x, y)7

= (x’”)d,(y")dJ

n m
= |ef, esz , e, = identity of 4
e, = identity of B
= (e}, &)

= identity of 4 X B

mn
o(x, y) ‘ 7

mn

d

= mn

= g,mn|mn
d | d

=d|1=d=1.

.. mand n are relatively prime.
Conversely, let m and n be relatively prime. We show A4 x B is cyclic, generated

by (a, b). For that we prove o(a, b) = mn = o(4 % B).
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Consider  (a, b)™ = (a™, b™)
= (@), ("))
= (e,, e,) = identity of 4 x B
L/et (a7 b)r = (el’ ez)

= (@, b)=(e,e)
= d=e,b =e¢,
= ola)=m|r,ob)y=n|r
= mn | r as m, n are relatively prime.
=> mn<sr
o(a, by =mn = o0(4 x B)
Hence A x B=<(a, b)>= cyclic group generated by (a, b).

Remark: One could generalise the above result and say If G,, G,,..., G, be
finite cyclic groups of order m, m,,,..., m, then G, x G, x ... x G, 1s cyclic if
and only if m,, m; are relatively prime (i # ).
Problem 15: Let o(G) = p°q’, p, q are distinct primes such that q J(pz -Lp
t ¢° - 1. Then G is abelian.
Solution: The number of Sylow p-subgroups of G is 1 + kp such that 1 + kp|q?.
So, 1 +kp=1,qorqg* If 1 +kp=g?, then plg° — 1, a contradiction.
If1+kp=g,thenplg— 1 =p<qg—1< g, acontradiction.
So, there is only one Sylow p-subgroup H of G such that H < G. Similarly, there

is only one Sylow g-subgroup K of G such that K < G. Then G=H x K. Since H
and K are abelian, sois G.

Problem 16: If every Sylow subgroup of a group G is normal and abelian,
then show that G is abelian.

Solution: Let g be the group generated by all Sylow subgroups of G. Then g <
G.If P, Q are Sylow subgroups of different orders, then P and Q are normal and

P Q= {e}.
= xy=yxforallx e Pandy € Q. Also,xy=yxVx,y € P.
Thus ¢ is abelian.

Let P be any Sylow subgroup of G, then P € o = o(P)|o(g) V Sylow
subgroups P of G.

= o(G)|o(p) = g =G orthatGisabelian.

Problem 17: Show that if G is a group of order 45, it is IDP of its Sylow
subgroups.

Solution: o(G) =45 =3 x 5.

Number of Sylow S-subgroups is (1 + 5k) s.t., (1 + 5k) | 9 which gives
k=0



i.e., 3 aunique normal Sylow 5-subgroup H of G where o(H) = 5.
Similarly, 3 a unique normal Sylow 3-subgroup K of order 9.
Since o(HN K)|9,5, wefindo(HNK)=1=HNK={e}

5x9
1

Also o(HK) = =45 =0(G) = G=HK
Hence G is IDP of its sylow subgroups H & K.

is

Problem 18: If H, K are normal subgroups of G, show that HGK
)

isomorphic to a subgroup of %x %

Solution: Define 8: G — 6.6 s.t.,
H K

Ax) = (Hx, Kx) forallx e G
0 1s well defined as x =y = Hx = Hy, Kx = Ky = (Hx, Kx) = (Hy, Ky).

01s ahomomorphism as
Axy) = (Hxy, Kxy)
= (HxHy, KxKy)

= (Hx, Kx) (Hy, Ky)
= dx) Ay) forallx,ye G
G

. . G
Ker 8 = G = identity of —x—
er {x € G| Ax) = identity o HXK}

{x € G| (Hx, Kx) = (H, K)}
{x e G|Hx=H, Kx = K}
{xe G|xe H,x € K}
={xeGlxe HNn K}
HnNK.

G =
Ker @ HnNnK

is isomorphic to A G)
(Note fis onto map from G to & G))

. G G
Al G b f—x—.
so, AG) is a subgroup o T

is isomorphic to a subgroup of 6.6 .
HnNK H K
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1. Whatis a p-group?

3. What is Sylow's second Theorem?

. Give an example of finite p-group.

Check Your Progress

6.4

ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

. A p-group is a group in which every element has order p” where p = prime.

Here p is same for all elements and » may vary

. Group k2= {1, (12) (34), (13) (24), (14) (23)}
. Any two Sylow p-subgroups of a finite group G are conjugate in G.

6.5

SUMMARY

A p-group is a group in which every element has order p” where p = prime.
Here p is same for all elements and » may vary.

Any finite p-group has non-trivial Centre.
A p-group may or may not be abelian.

Let p be a prime s.t. p™ divides order of a group G and p™** does not

divide it. Then a subgroup H of G's.t. o(H) = is called a Sylow p-subgroup
of G or p-Sylow subgroup of G.

Let G=G; x G, ={(91, 92) |91 € G1, 91 € G2}, then G=G; % G, called
direct product or external direct product (EDP) of G, G,

6.6

KEY WORDS

Prime: A prime number is a whole number greater than 1 whose only factors
are 1 and itself.

Cyclic group: A cyclic group or monogenous group is a group that is
generated by a single element.

e Normal subgroup: A normal subgroup is a subgroup that is invariant under

conjugation by members of the group of which it is a part.



6.7 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. Define Sylow p-subgroup.

2. Find a Sylow 3-subgroup of 5,,.

3. Show that if G is a group of order 45, it is IDP of its Sylow subgroups.
4. Show that all Sylow p-subgroups of G are isomorphic.

Long Answer Questions

1. If Gis a finite group, then show that G is a p-group ifand only if o(G) =p™.
2. State and prove Sylow’s First Theorem.

3. Prove that every p-subgroup of a finite group G is contained in some Sylow
p-subgroup of G.

4. Ifevery Sylow subgroup of a group G is normal and abelian, then show that
G is abelian.
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UNIT 7 FINITE ABELIAN GROUPS

Structure

7.0 Introduction

7.1 Objectives

7.2 Finite Abelian Groups and Supplementary Problems
7.3 Answers to Check Your Progress Questions

7.4 Summary

7.5 Key Words

7.6 Self Assessment Questions and Exercises

7.7 Further Readings

7.0 INTRODUCTION

The concept of an abelian group is one of the first concepts encountered in
undergraduate abstract algebra, from which many other basic concepts, such as
modules and vector spaces, are developed. The term Abelian group comes from
Niels Henrick Abel, a mathematician who worked with groups even before the
formal theory was laid down. This unit discusses about finite abelian groups and
the fundamental theorem on finite abelian groups. In the end you will also see
some problems based on proven theorems.

7.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand finite abelian groups
e [earn some theorems on finite groups

¢ Solve problems based on abelian groups

7.2 FINITE ABELIAN GROUPS AND
SUPPLEMENTARY PROBLEMS

Having studied direct products, one would like to know whether groups can be
written as direct product of some ‘simple looking’ groups, Luckily, such a class
of groups exists, namely finite abelian groups. The main purpose of this section
is to prove that all important theorem called fundamental theorem on finite abelian
groups which states that a finite abelian group is a direct product of cyclic groups
of prime power order and the representation is unique except for the order in
which the factors are arranged. This paves the way for us to spell out the method
that gives the number of non-isomorphic finite abelian groups ofa given order.



We first show that a finite abelian group can be written as a direct product of Finite Abelian Groups
p-groups.
Theorem 1: A finite abelian group is a direct product of its Sylow p-

subgroups. NOTES

Proof: Let G be a finite abelian group of order n. Letn=p,*1 ...p * pl.'s being
distinct primes.
LetS,,...S, be distinct Sylow p -subgroups respectively. o(S;) = p,* forall i=

1 r

sesey

We show that G = A TR Sr

Since G is abelian, each S, is a normal subgroup of G.

Let m=p,*..p%
and T={x € G|x" = e} Then (p,*!, m) =1
and 7'is a subgroup of G as G is abelian.
Now xe S NnT=okx)|oS)=p™
and o(x) | m
So, o(x) | (p,*, m) =1
= ox)=1
= x=e
S NT={e}

As (p]‘“ m) = 1, 3 integers u, v such that
up,“l +vm =1
Letx € G. Then x = x'

_ xuplo‘l +vm

a
= x" . X!

S, T(as ("1™ = (@1%Imy = 01 = () = e
o(x"™) [ p\*!
vm) — plﬁl
<x"™>1is ap, group
< x> - S]
X" e S|
Also (x”” 1Hhym = yun = ¢
upl e T)
G = §,T. Also as seen earlier S, N 7' = {e}

Since G is abelian, S, and 7' are normal subgroups of G, and thus G is IDP of
S, and T

m

o(x

R

U
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. G =8, x T (because of the isomorphism)
Also, o(G)= o(S,T)
= o(S)) o(T)
= n=p,“ oT)
= o) =p,?..p" =m
As above, we can show that

T=S, x U, where Uis a subgroup of 7'such that o(U) = p,*3 ... p,*". In this
way, we shall have

G=§%x8,..8
which proves the theorem.

Remark: Since a Sylow p-subgroup is a group of prime power order, we have
established that 4 finite abelian group is a direct product of groups of prime
power order.

Having broken G into product of groups of prime power order, we concentrate
now on results pertaining to abelian groups of prime power order rather than on
Gitself.

Theorem 2: Let G be an abelian group of prime power order p" and let a
€ G have maximal order amongst all elements in G. Then G is IDP of A and
K, where A is the cyclic subgroup generated by a and K < G. Hence G can
be expressed as G = A X K.

Proof: Let o(G) = p", p a prime.

We use induction on n. If n = 1 then o(G) = p, a prime and thus G is a cyclic
group of order p and if G =< a >then a is an element of maximal order p in G
and also then G = <a > x {e} and so the result holds forn = 1.

Let the result be true for abelian groups of order p¥, where k < n.

Let a € G be an element of maximal order and suppose o(a) =p”.
In case G =<a >, then G =<a > x {e} and there is nothing to prove.

So assume, G # < a >. Thus 3 elements in G which are notin < a >=4. Out
of these elements let b be an element of minimal order.
o(b) = o(b) _ob) _

g.c.d.(o(b),p) p

Note as o(b)|o(G) = p", o(b) is of the type p' for some i.
So o(b’)<o(b) = b’ € A as b is of minimal order s.t., b ¢ A.

Now b e A=<a>= b’ =d for some i

Now

o(b).

If x € G be any element then as
o(x)|o(G) = p", o(x) = p' for some ¢

t
and sox’ =e



Again as o(a) = p™ is maximal order of an element in G, p'<p™i.e., p' | p"
andsox”" =e¢ VxeG

and o(a') < p™

So

Let

Again

ie.,

m
= =e

m—1 m—1

e=p"" =(p?)"  =(d)
= o(ai) < p”"l

= a' cannot be a generator of 4 = <a > as o(4) = o(a) = p"

=P Q=1

p" and i have common factors

= p|iorthati=pj

=>HW=d=ad

c=a’bthenifc € 4, then a’b € 4

= a’b = a, for some a, € A.

= b=da, € A, which is not true. Hence ¢ ¢ 4
&P =aPbP=agbP=bPHW =¢,c+e

= o(c)=p

Jan element c € G s.t., ¢ ¢ 4 and o(c) = p.

So o(b) should also be p as b has minimal order

Let
Also,

If

B=<b>, then o(B)=o0(b) =p
ANB<B= o4 B)oB)=p
=o0AdnNB)= 1orp.

o(4 N B) = p, then o(4 N B) = o(B)
=>ANB=B=BcA

which is not possible as b ¢ 4

Hence,
Let
Since
Let

Now

Again,

o(A N B) =1 or that ANB = {e}

G = G/B.
aeG,BaecGIB=G
Ba =a € G

@)°@ = (Ba)’®) = Ba-Ba---Ba = Ba’® = Be = B = Identity of G
o(@)| o(a) )

Ba®® = (Ba)°@ = (Ba)’®® = B =1dentity of G

= ao(a) B

Finite Abelian Groups

NOTES

Self-Instructional
Material

133



Finite Abelian Groups

134

NOTES

Self-Instructional
Material

Also, a®D e 4= a"D c AnB={e}
= a°D =e= o(a)| o(@) = o(a) =o(@) from (1)
Now g7 will be an element of maximal orderin G asif ¢~ € G is an element
with more order than o( z ) then
as o(@)|o(c)as in (1), we get
o(€) < o(c) = o(c) = 0(¢) > (@) = o(a)
contradicting the fact that a is of maximal order.
Now o(G) < o(G) and so using induction we can say G is anIDP of < 7 >and
T for some subgroup 7 of G and

G=<a>T, <a>nT={e}
7 is a subgroup of G=G/B = T:% for some K< G

We show G is IDP of 4 and K

Let xeAnNnKthenx e 4and x e K
= x =d for some i

and xeK=>deK=BdeT
= Ba) e T
=@) el
= @) e<a>nT={e}
= (E)i=E:>Bai=Be:aieB
deAnB=1{el=>d=c¢
x=ad=e=>ANK={e}

Now let xe Gthen x=BxeG=<a>T
= x=(@)7y yeT=%,
= Bx=(Ba) By=Ba’y  (¥=B8By)
= xy_]a_jeBt;K

= xla/=k forsomeke K

= x=kdy=dz forsomez e K
or that xe<a>K = GcdK

ie, G=AK, AN K= {e}




So G is an IDP of 4 and K and can be expressed as 4 x K.
We are now ready to prove the fundamental theorem on finite abelian groups.

Theorem 3: (The Fundamental Theorem on Finite Abelian Groups). 4 finite
abelian group is direct product of cyclic groups of prime power order.
(representation being unique).

Proof: Let G be a finite abelian group. We prove the result by induction on o(G).
If o(G) =1, thenresult is trivially true. Assume that the result is true for all abelian

groups of order < o(G).

Leto(G)=p,*...p,%, p.s are distinct primes.

By theorem 1, G=S§, x ... x § , where S is the Sylow p.-subgroup of order
p(i=1,2,.,r).ie., asubgroup of prime power order.

Bytheorem2, S§.= 4, K, where each 4. is a cyclic group.
= G= A, xK)*x..x(4 xK)
= (A, X .. xA4)x (K x.. xK)

Now o(K, X ... x K)) <o(G) and K| X K, ... x K is an abelian group. By
induction hypothesis K| x ... x K =T, x ... x T, where each T, is a cyclic
subgroup of G of prime power order.

G=A4,x..xA XT x.xT
= direct product of cyclic subgroups of prime power orders.
. result is true in this case as well.
By induction result is true for all finite abelian groups G.
Note: By theorem 2, S, is IDP of 4, and K,

ie., S,=A,K, 4,nK,= {e}
_o(4)o(K;) _ ' '
o= A ~ KD

But o(S,) = p;* = prime power and thus 0(4,) and o(K) being its divisors are also
prime powers.

Summing up, we notice that any finite abelian group is product of 5|, S, ....,S,
where each §; is a group of prime power order and each S, is then a product of
cyclic groups of prime power order. To tackle the uniqueness issue, we notice that
each S, is unique as if x €S, then o(x)|o(S)) = p = o(x)= p/* and thus x ¢ S,
for anyj #i.

We wind up the whole process by proving

Theorem 4: Let G be a finite abelian group of order p", p a prime. Suppose
G = A, x..x A, where each A, is a cyclic group of order p"' with n, = n,
2 ...2n, > 0. Then the integers n,,..., n, are uniquely determined, (called
invariants of G).
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In other words, if G is a finite abelian group of prime power order p” and
G=A4, x4, .. x A,
G=B,xBx..xB,
where 4; and Bj are non trivial cyclic subgroups with
o(4,) 2 o(4,) 2 ... 2 0(4,) >0
o(B)) 2 0(B,) > ...z 0(B)>0
then k =/ and o(4,) = o(B,) V.
Proof: Suppose G = A4, x .. x4,
and G= B, *x..xXB,
where 4, and Bjs are cyclic groups s.t. o(4,) = p", o(B) = P,
nzn,2.2n>0h>2h>.2h>0
Our aim is to show that k=/and n,=h, foralli. Letg € G. Theng=a,a,...a,,
a, € A,
Since nozn foralli=1,..k
p'i|ptt foralli=1,.., k
pll=ptiph foralli=1,..,k

Pl = g2 " 1l P
So, g a’,;a’yt .. af
n ny up nj  uj
= p pep prp
al a2 -.-ak

= eas (ai)”m =a“) = ¢ forall i
o(g) | p" forallg e G
= o(g)<p" forallg € G
Also 4, 1s a cyclic group of order p"' = 3 an element of order p"!.
So p"! is the maximal order of elements in G. Similarly, by taking
G =B, x..x B, we get ph1 to be the maximal order of elements in G.
' pl=pt = n =k

Suppose we have proved that n, = h, n, = h,,..., n, | = h_,. Suppose
n,#h,.Letn >h, =m. Define C= {x" |x e G}. Since G is abelian, C is
subgroup of G.

Let A =<a;>.., 4, =<aq.> o(a) = o(d) =p"
B, =<b>,., B, =<b.> 0(b)=0(B)=p
We claim that
C=<b">x .. x<b ">
Letx*" e C,x e G

Now xeG@G=>x=X, ...X,, X..X, X, € B,
1 =1 7t J



x.e B.= x.=b7 Finite Abelian Groups
J J J J

m m m
P = xP N

N
= b/ V" b, " b P
Now for all j > 1, o(B) = pli| pht=p" NOTES
= p" Zp}fip"j
=eforallj>1¢
= bjpm = bjph"pvj =eforallj>¢t
= b,
="
e <b/">.<b ">

Cc<b/>.. <b >

m m
But b/.p eC:><bl.1’ >c C
C=<bl">.. <b ">
Also xe<bP'>n<bl> .. <b /">

= x€B,xeB,.B,

B ..B

= xeB,xeB,..B B .. B

= x=e.
Similarly for other intersections.

c=<b]p’”>x

Thus o(C) = o) ... o(b, ")
_ _ ob) o(b_1)
(", 0by)  (p",0(by)
- P
" p"
Now G=4,% .. XA, =<a;>% ... x<a>and C<G
= C=<af">x...x<aql">
= O(C) — 0(611) ] O(ak)
(p",0(a))  (p",0(a;))
_ . p" p*
(", p") (", p™)
Since n=hy.,n  =h
/’11 /’l -1 n nk
(o) R A . E— P
p p (P s P t) (P s P k) Self-Instructional
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Again

So

So p_hl pht—l _ p_hl pht—l p”t p”k
" A """ (™ ™)
= - P
", ") ", ")
n[ nj
2 mp N’ as - n; z1
(", p") ", p7)
m n — m
> lasn,>m = ", p")=p
n n
o p—t:p_t:pnt_m>1
", p")  p"
a contradiction.
on= hi for all i
So, o(G) = o(4))......o(4,) = o(B,)......0o(B))
= p'l.... pre=ph Pl
Ifke>1p" ... prtpttt prlk=ph P
n 1 n = = r
= p'Fl p'*=1asn = h, forall i
which is not true.

.. k1is not greater then /. Similarly / is not greater than £.
k=1

Problem 1: Let G be the finite abelian group of order mp" where p + m. Then
show that G is IDP of H and K where H = {x € G|xpn=e} and K = {x €
G | X" = e} and also that o(H) = p".

Solution: It can be easily checked that H and K are subgroups of G.
We show G = HK, HK = {e}
Now as p + m, g.c.d. (p", m) = 1 and thus there exist integers s, ¢ such that

1 =sm+ "

If x € G be any element then

x = X = em "

Now (xsm )pn _ (xp”m )S —f e (ao(G) =e)
=>x"eH
(xtpn )m _ (xpnm)t _ e[ s xlpn c K

xe HK= Gc HK = G=HK



Let now xeHNK=xeHand x e K

= x”" =c andx" =e
= o(x) | p" and o(x) | m
= ox)=1as ", m=1
= x=eorthat H N K= {e}
Since G is abelian, H, K are normal subgroups and hence G is IDP of H and K.

Again, p'm =0(G)=0(HK)=%=O(H)-O(K)

If, plo(K), then by Cauchy's theorem 3k € K s.t., o(k)=p.Also k € K = k"
= e (by definition of K) and so p | m, which is not true. Thus p + o(K) or that
o(K) is not a multiple of p and hence o(H) = p".

A beautiful application of theorem 4 is

Theorem 5: Tiwo abelian groups of order p" are isomorphic if and only if
they have the same invariants.

Proof: Suppose G, G’ are finite abelian groups of order p”. Let G and G’
be isomorphic and &be an isomorphism from G onto G'.

Let G=4,%..x4,4,=<a;>, o) =p"
Since @is an isomorphism, &4,) is normal subgroups of G' foralli=1...., k.
SoBA)). & A,) is a subgroup of G
Also gdeG@=>31geCGst. Ag) =g
geCG = g=x ... X, X; €4
= g =ag = Aax) ..... Ax,)
€ AA)) ...... AA4,)
= G ca4) ... AA,)
= G =a4) ... AA,)
Also, A4,) N &A4,) ... AA,) = {€'}, ' = identity of G
as x e &4,),x € &4,) ...... AA4,)
= x = fx)) = Ax,).....Ax), x;, € 4,
= Ax)) = dx,.....x))
= X T Xy e X,
= xl’1 Xy eeees X, =e
= x,=eforalli
= x=e

Similarly for other intersections.
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“ G'=64) % ...x &A)). Since 4, =<a,>, A4) =< &a,) >.

So o(&4,)) = o(&a,)) = o(a,) for all i
=p"iforall i

Thus, G and G’ have same invariants.

Conversely, suppose G and G’ have same invariants.
Let G=4, % . xA,4 =<a>
Then G'=B, x..xB,,B,=<b,> 0(4,) = o(B)
as G and G’ have same invariants.

But any two cyclic groups of same order are isomorphic. 4; and B; are isomorphic
forall i. So 4, x ... x4, = G and B, % ... X B, = G’ are isomorphic.

We are now in a position to specify the number of non-isomorphic finite abelian
groups of order p” through

Theorem 6: The number of non-isomorphic abelian groups (or number of
distinct isomorphism classes of abelian groups) of order p", p a prime, equals
the number of partitions of n.

Proof: Let G be an abelian group of order p".
By theorem 4, G =4, x ... X A4,, A, =<a,>, o(4,) = p"
o(G) = o(4,) ... o(4))
= pl=pl.pk=p

is a partition of .
Conversely, consider any partition of .
Let n=nt..+tn, nyz2n,2..2n>0
be a partition of n.
Let 4, be a cyclic group of order p" for all i.
Let G = A, % ... x 4,. Then G is an abelian groups of order p"! -+ =7"
Let A =set of all non-isomorphic abelian groups of order p”.
B = set of all partitions of .
Define : A — B as follows:
LetGe A LetG=4, x..xA4,A4,=<a,> 0(4,) =p".
Let AG) =n, + ...t n,=n
Clearly, #is well defined.
Also aG) = 4G
= nt.tn=m+..+tm=n

= k=1[,n=m foralli



= G and G’ have same invariants

= G and G’ are isomorphic

= G=G

= fis 1-1

Letn=n +..+n,n 2n,2..2n>0beapartition of n. Then as seen

above G=4, % ..xA,,A.=<a.>, o(4;) = p" is an abelian group of order
p"and

AG)=n,+..+tn,

@1s onto.

o(A) = o(B), which proves the result.

It is not difficult to prove that two finite abelian groups are isomorphic ifand
only if their Sylow subgroups are isomorphic. Now from theorem 6, we get

Theorem7: Letn=p,* ... p * whereps are distinct primes. Then the number
of non-isomorphic abelian groups of order n is p(a,) p(a.,)......p(a.)) where
p(a,) denotes the number of partitions of a,.

Problem 2: Find all the non-isomorphic abelian groups of order
(@) 8 (i) 6 (iii) 20 (iv) 360.
Solution:

(/) Since 8 =23, the number of non-isomorphic abelian groups of order 8 is
given by p(3), where p(3) denotes the number of partitions of 3.

Since p(3)=3 and 3 =3
3=2+1
3=1+1+1

The number of non isomorphic abelian groups of order 8 is 3. The groups are

Zy,2,,xX2y, Ly X1y X1,

23 5

ie., Z,7,%x71, Z1,x7,x1Z,

(ii) As 6=2"x 3!, the number of non-isomorphic abelian groups is p(1) p(1)
= 1. 1 = 1. The groups being the cyclic groups Z, x Z, = Z,.

(iii) As 20 =22 x 5! the number of non-isomorphic abelian groups of order
201s given by

pP2)p(1)=2.1=2

The groups being Z, X Z,, 2, * Z, X Zi.
(iv)o(G) = 360 = 23 x 3% x 5!
The number of non isomorphic abelian groups of order 360 is
pBp2)p(1)=3 x2 x1=6and as
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3=3, 3=2+1, 3=1+1+I
2=2, 2=1+1, we have these six groups to be

L X2, xZs = Zg XZLgxX1Ls =7,
2 X1y X1 X ZLs = Ly X1y xZgXZs

Ly X2y X Ly XZLyp XZs = LyxZLyxZLyxZLyxZLs
Z ;5 X1y % Ly xZLs = Ly XLy X2y X ZLs

Ly XLy X Ly X2y X1ls = LyxZLyx1Lyx1LyXLs

2y X2y X Ly XLy XLy xZLs
Problem 3: Suppose G is an abelian group of order 120 and suppose G has
exactly three elements of order 2. Find the isomorphism class of G.
Solution: o(G) =120=23x3x 5

So the number of non isomorphic abelian groups of order 120 will be p(3)p(1)p(1)
=3.1.1 =3 and these are

2,x1,x1,=71,,,
2, xZ1,xL,x L
Ly x Ly x Ly x 1, x Ls.
Z, x 7L, x L has only one element (4, 0, 0) of order 2 so it cannot be G

Again, Z, x Z,x L, x L, x Zj has (1,1,1,0,0), (1,0,1,0,0), (0,1,1,0,0) and
(1,1,0,0,0) as elements of order 2,

so it cannot be G
whereas Z,x Z, x Z, x Z has exactly three elements
(2,1,0,0),(0,1,0,0), (2,0,0,0)
which have order 2 and hence G is Z, x Z, x Z, x Z

Problem 4: Let G be a finite abelian group under addition. Let n be a +ve
integer. Define nG = {nx | x € G} and G[n] = {x € G | nx = 0} then show
G _
=n
G[n]

that nG and G[n] are subgroups of G and G.

Solution: We use 0 to denote identity of G.

Since nx, ny € nG = nx—ny=n(x—y) € nG,0=n.0 € nG, nG is a subgroup.
Similarly one can see that G[#n] is a subgroup.

Define a mapping 8:G — nG, s.t.,
0 (x) = nx

then @is a well defined onto homomorphism



Ox+y)=n(x+y)=nx+ny=60(x)+ 0() etc.,

Thus by Fundamental theorem of group homomorphism »G = o 0
er

Now x € Ker@ =04x)=0=nx=0=n € G[n]

confirms that G =nG.
Gln]

Remark: If binary composition of G is multiplication, the above subgroup G[#]
will be {x € G |x" = e} and we can denote it by G,. Again the subgroups nG

will be {X"" | x € G}and we can denot it by G". We have thus shown that Gﬁ =G".
n

It can be a good exercise for the reader to write the above proof independently

under the multiplicative composition.

Problem 5: Let G ={1, 7, 17, 23, 49, 55, 65, 71} be the group under
multiplication modulo 69. Express G as EDP and IDP of cyclic groups.

Solution: o(G) = 8 =23, thus as seen in problem 2 above the number of non
isomorphic abelian groups is p(3) = 3 and these are

7, 7,x2, 7, 7,xZ,
Again, we notice that the elements 7, 23, 55 have order 4 and the elements 17,
49, 65, 71 have order 2 in G.

Since Zg has an element of order 8 and G has no element of order 8, therefore,
GisnotZ,

Again Z, x Z, x Z, has no element of order 4 and so we are left with the only
choice that Gis Z, x Z,

To write G as IDP of cyclic groups, we pick up an element of maximum order
4 (see theorem 2), say, 7 then <7 >={7,49, 55, 1} = H is one of the factors.

Again, taking an element of order 2, say 65, we get < 65 >= {65, 1} =K. Here

o(H)-o(K) _4x2
oHNK) 1

o(HK) = =8=0(G)

thus G = HK, H N K= {1} and hence this is an expression of G as IDP of H
& K.

This expression is not unique as we can have other representations e.g., G =
<T7><17>o0r <23><65>

Problem 6: Let G be a finite abelian group. Let b € G be an element of
largest order in G. Show that o(a) divides o(b) Va € G

Solution: Now G = C, x C, x ... x C}, where C; = <x>, o(C)) = o(x;) =
m; such that m | m,|...[m, _ | |m,.

Consider (e, e, ..., e, x;) € G.
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Finite Abelian Groups Then (e, e, ..., e, xk)mk = identity of G and if (e, e, ..., €,x;,) = e
= x/ =e=o(x)=mlr=rzm,.
So, o(e, e, ..., e, x;) = m,
NOTES Let (), vy - ) € G.
Then (v, yy, ... y)"* = e as o(y)| o(C)) =m; | m, V i
= o((yy» ¥y ---» ) divides m,,
= my is the largest order in G and order of each element in G divides
my.
Problem 7: Prove that an abelian group of order 2"(n = 1) must have an
odd number of elements of order 2.
Solution: Let o(G)=2",n > 1.
Then G = C, x C, x ... x C}, where each C; is cyclic.

The elements (a, e, ..., e), (e, a,, e, ..., ), ..., (e, e, ..., e, a;) are of order
2 where o(a,)) =2 V i.

This gives k- | elements of order 2.

Similarly, (a, a,, e, ..., e), (a;, e, ay, e, ..., e), ..., are elements of order
2. This gives kC2 elements of order 2 in G.

In this way, the number of elements of order 2 in G is k- Tt kC2 + ...+ ka
=1+ ke, +key + ot kg — 1
=(1+ 1)¥— 1 =2%F— 1 which is odd number.

Note that there is unique element a; of order 2 in each C,.

Table showing groups of order upto 15.

Order of group Abelian Non-abelian
15 7, Nil
14 Z, Dyy
13 Z,, Nil
12 Z,),Z,x 7L Ay Dy, O
11 Z, Nil
10 Z) Dy
9 Zy,7,xZ, Nil
8 Zi,71,%x7, Dy, Quaternion group
Z,x1,x1Z,
7 Z, Nil
6 Z, S
5 Z, Nil
4 Z,,7,xZ, Nil
3 Z, Nil
2 Z, Nil
1 z, Nil
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1. What is an abelian group?

3. What is the fundamental theorem on finite abelian groups?

Check Your Progress

Give an example of abelian groups.

7.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS
1. Anabelian group, also called a commutative group, is a group in which the

result of applying the group operation to two group elements does not depend
on the order in which they are written.

Cyclic groups are good examples of abelian groups.

. A finite abelian group is direct product of cyclic groups of prime power

order.

7.4

SUMMARY

A finite abelian group is a direct product of groups of prime power order.

A finite abelian group is direct product of cyclic groups of prime power
order. (Representation being unique).

Two abelian groups of order p™ are isomorphic if and only if they have the
same invariants.

Two finite abelian groups are isomorphic if and only if their Sylow subgroups
are isomorphic.

The number of non-isomorphic abelian groups of order #™, where p is prime,
equals the number of partitions of 7.

7.5

KEY WORDS

e p-group: A group is called a p-group if order of each element of the group

is some power of p, where p is prime.

Abelian group: A group in which the result of applying the group operation
to two group elements does not depend on the order in which they are
written.

Isomorphic: Anisomorphism is a homomorphism or morphism that can be
reversed by an inverse morphism. Two mathematical objects are isomorphic
if an isomorphism exists between them.
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7.6 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions
1. Find all the non-isomorphic abelian group of order 8.
2. Find all the non-isomorphic abelian group of order 360.

3. If pis a prime not dividing o(G), show that pG = G, where G is a finite
additive abelian group.

Long Answer Questions

1. Prove the fundamental theorem on finite abelian groups.

2. Show that two abelian groups of order p™ are isomorphic if and only if they
have the same invariants.

3. If G is a finite abelian group and o(G) = py P4, ... . B, Where p; s are distinct
primes, show that G is cyclic.

4. Show that U5 = Uye.
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UNIT 8 RING THEORY

Structure

8.0 Introduction

8.1 Objectives

8.2 Definitions and Examples of Rings

8.3 Some Special Classes of Rings

8.4 Answers to Check Your Progress Questions
8.5 Summary

8.6 Key Words

8.7 Self Assessment Questions and Exercises
8.8 Further Readings

8.0 INTRODUCTION

A group you noticed is a system with a non-empty set and a binary composition.
One can of course talk about non empty sets with two binary compositions also,
the set of integers under usual addition and multiplication being an example. Though
this set forms a group under addition and not under multiplication, it does have
certain specific properties satisfied with respect to multiplication as well. The unit
singles out some of these and generalize the concept in the form of aring. This unit
starts with the formal definition and generalize the concept in the form of a ring.

8.1 OBJECTIVES

After going through this unit, you will be able to:
e Define and generalize various concepts of ring theory
e Solve problems based on rings

¢ Know about special classes of rings

8.2 DEFINITIONS AND EXAMPLES OF RINGS

Definition: A non empty set R, together with two binary compositions +and .
is said to form a Ring if the following axioms are satisfied:

@a+b+c)y=(a+b)+c foralla,b,ceR

@a+b=b+a fora, beRr

(7ii) 3 some element O (called zero) in R, s.t.,a+0=0+a=aforalla € R
(iv) foreacha € R, 3 an element (—a) € R, s.t.,a+(—a)=(-a)ta=0
Wa.(b.c)y=(a.b).c foralla,b,c eR
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viya.(b+c)=a.b+a.c
(bt+tc)y.a=b.a+c.a foralla,b,ceR
Remarks: (a) Since we say that + and . are binary compositions on R, it is
understood that the closure properties w.r.t. these hold in R. In other words, for
alla,b € R,a+ banda. b areunique in R.

(b) One can use any other symbol instead of + and ., but for obvious reasons,
we use these two symbols (the properties look so natural with these). In fact, in
future, the statement that R is a ring would mean that R has two binary compositions
+and . defined on it and satisfies the above axioms.

(c) Axiom (v) is named associativity w.r.t. . and axiom (vi) is referred to as
distributivity (left and right) w.r.t. . and +.

(d) Axioms (i) to (iv) could be restated by simply saying that < R, +> forms
an abelian group.

(e) Since 0 in axiom (ii7) is identity w.r.t. +, it is clear that this element is unique
(see groups).

Definitions: A ring R is called a commutative ring if ab = ba forall a, b € R.
Again if Janelemente € Rs.t.,
ae=ea=a foralla eR

we say, R is aring with unity. Unity is generally denoted by 1. (It is also called
unit element or multiplicative identity).

It would be easy to see that if unity exists in a ring then it must be unique.
Remark: We recall that in a group by > we meant a . a where ©.” was the binary
composition of the group. We continue with the same notation in rings as well. In
fact, we also introduce similar notation for addition, and shall write na to mean
a+a+ ...+ a(ntimes), n being an integer.

Example 1: Sets of real numbers, rational numbers, integers form rings w.r.t.
usual addition and multiplication. These are all commutative rings with unity.
Example 2: Set E of all even integers forms a commutative ring, without unity
(under usual addition and multiplication).

Example 3: (a) Let M be the set of all 2 x 2 matrices over integers under matrix
addition and matrix multiplication. It is easy to see that A/ forms a ring with unity

1 0 . .
{0 1}, but is not commutative.

(b) Let M be set of all matrices of the type [g (ﬂ over integers under matrix
addition and multiplication. Then M forms a non commutative ring without unity.
Example 4: The set Z, = {0, 1, 2, 3,4, 5, 6} forms a ring under addition and
multiplication modulo 7. (In fact, we could take » in place of 7).

Example 5: The set R = {0, 4, 6} under addition and multiplication modulo 6
forms a commutative ring with unity. The composition tables are
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Since004=0,20 4=2,406 4 =4, we notice 4 is unity of R.
Example 6: Let /" be the set of all continuous functions /: R — R, where R=
set of real numbers. Then F forms a ring under addition and multiplication defined
by:
for any fgeF
(f+ gx =flx) forallx e R
(f @ = fAx)g(x)
forallx e R
zero of thisring isthe mapping O : R - R, s.t,,
Okx)=0forallx e R
Also additive inverse of any /'€ F'is the function (—f) : R > R s.t., (—f)x =
—f ()
In fact, /" would have unity also, namely the function i : R — R defined by
i(x)=1forall x € R.

Remark: Although the same notation fg has been used for product here it should
not be mixed up with fog defined earlier.

Example 7: Let Z be the set of integers, then Z[i]= {a +ib | a, b € Z} forms
aring under usual addition and multiplication of complex numbers. a + ib where
a, b € Zis called a Gaussian integer and ZJ[{] is called the ring of Guassian integers.

We can similarly get Z, [i] the ring of Gaussian integers modulo 7. For instance,
Zjil]={a+tib|a,be Z,= {0, 1,2} mod 3}
={0,1,2,i, 1 +4,2+4,2i, 1 +2i,2+2i}
Example 8: Let X be a non empty set. Then P(X) the power set of X (i.e., set
of all subsets of X) forms a ring under + and - defined by
A+B=(AUB)—(ANB)
A.B=ANB

In fact, this is a commutative ring with unity and also satisfies the property
A*= A for all 4 € P(X).

Example 9: Let M = set of all 2 x 2 matrices over members from the ring of
integers modulo 2. It would be a finite non commutative ring. M would have

. . b .
2% =16 members as each element a, b, ¢, d in matrix {a d} can be chosen in

c

2 ways. Compositions in M are given by
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a b_Fx y| _|a®x b®y
c d zZ U c®z d®u
where @ denotes addition modulo 2 and

a bllx y|_ [a®x®b®z a®@yDb®u
c d c@xDPd®z c®y®dRu

zZ U
& being multiplication modulo 2.

1

1 1
That M is non commutative follows as L J{O 0} = L

) g P

Example 10: Let R = {0, a, b, c}. Define + and . on R by

+| 0| al| b| c 0| a| b| ¢
O 0| a| b| c 0Of 0| Of O O
al| al 0| c| b al| 0| a| b| c
b| b| c¢| 0| a b| 0| a| b| c
c| c| b| a| O cl 0] O O O

Then one can check that R forms a non commutative ring without unity. In fact

itis an example of the smallest non commutative ring.

8.3 SOME SPECIAL CLASSES OF RINGS

Theorem 1: /n a ring R, the following results hold

@Ha.0=0.a=0 forallaeR

(@) a(-b) = (—a)b =—ab forall a,b € R

(iii) (—a) (-b)=ab. YV a,be R

vy alb—c)=ab—ac. VY a,b,c € R
Proof: (i)a.0 =a.(0+0)

= a.0=a.0+a.0

= a.0+0=a.0+a.0

= 0=a.0

using cancellation w.r.t + inthe group <R, +>.

({@)a.0=0

= a(-b+tb)=0

= a(=b)+ab=0

= a(-b)=-(ab)



similarly (— a) b=—ab.
(iii) (—a) (= b) =—[a (= b)] =—[-ab] = ab
(Mab-c)=ab+(-0)
=ab+a(-c)
=ab — ac.

Remarks: (i) If R is a ring with unity and 1 = 0, then since for any a € R,
a=a.l =a.0=0,we find R= {0} which is called the ¢rivial ring. We generally
exclude this case and thus whenever, we say R is a ring with unity, it will be
understood that 1 # 0 in R.

(ii) If n, m are integers and a, b elements of a ring, then it is easy to see that
n(a + b)=na + nb
(n + m)a=na + ma
(nm)a = n(ma)
am an — am +n
(a™)" = a™" (see under groups).

Problem 1: Let <R, +, .> be a ring where the group <R, +> is cyclic. Show
that R is a commutative ring:

Solution: Let <R, +> be generated by a. Let x, y € R be any two elements,
then x = ma, y = na for some integers m, n.

Now xy = (ma)(na)
=(ata+.ta)ata+..+a)
m times n times
= (mn)a* = (nm)a* = (na)(ma) = yx

We are so much used to the property that whenever ab = 0 then either a =
0 or b= 0 that it may need more than a bit of convincing that the result may not
always be true. Indeed in the ring of integers (or reals or rationals) this property
holds. Butifwe consider the ring of 2 x 2 matrices over integers, we notice, we
can have two non zero elements A, Bs.t, AB=0, but A # 0 B # 0. In fact, take

A:{O 1} andBZ{2 0} thenA;tO,B;tO.ButABZ{O O]Weformalise
0 0 0 0 00

this notion through

Definition: Let R be aring. An element 0 # a € R is called a zero-divisor, if
Janelement 0 #b € R s.t., ab=0 or ba =0.

Definition: A commutative ring R is called an Integral domain if ab=01in R =
either a =0 or b =0. In other words, a commutative ring R is called an integral
domain if R has no zero divisors.
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Ring Theory An obvious example of an integral domain is <Z, +, - > the ring of integers
whereas the ring of matrices, talked about above is an example of a ring which
is not an integral domain. Again, Z x Z will not be an integral domain.

Remark: Some authors do not insist upon the condition of commutativity as a
part of the definition of an integral domain. One can have (see examples 11, 12
ahead), non commutative rings without zero divisors.

NOTES

The following theorem gives us a necessary and sufficient condition for a
commutative ring to be an integral domain.

Theorem 2: A commutative ring R is an integral domain iff for all a, b, c
e R(a#0)

ab=ac = b=c.

Proof: Let R be an integral domain

Let ab =ac (a#0)
Then ab—ac=0

= alb-c)=0

= a=0or b—c=0
Since a#0,we geth=c.

Conversely, let the given condition hold.

Let a, b € R be any elements with a # 0.

Suppose  ab=0

then ab=a.0

= b =0using given condition

Hence ab =0 = b =0 whenever a # 0 or that R is an integral domain.

Remark: A ring R is said to satisfy left cancellation law if for all a, b, ¢ € R,
a#0

ab=ac = b=c.

Similarly we can talk of right cancellation law. It might, of course, be noted
that cancellation is of only non zero elements.

Definition: An element a in aring R with unity, is called invertible (or a unit) w.r.t.
multiplication if 3 some b € R such that ab=1 = ba.

Notice, unit and unit element (unity) are different concepts and should not be
confused with each other.

Definition: A ring R with unity is called a Division ring or a skew field if non
zero elements of R form a group w.r.t. multiplication.

In other words, a ring R with unity is a Division ring if non zero elements of
R have multiplicative inverse.
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Definition: A commutative division ring is called a field.

Real numbers form a field, whereas integers do not, under usual addition and
multiplication. Since a division ring (field) forms groups w.r.t. two binary
compositions, it must contain two identity elements 0 and 1 (w.r.t. addition and
multiplication) and thus a division ring (field) has at least two elements (see remark
on page 227).

Example 11: A division ring which is not a field. Let M be the set of all 2 x

. b —
2 matrices of the type[ C;; ] where a, b are complex numbers and @, b are

— a

their conjugates, i.e., if a =x + iy then @ =x—iy. Then M is a ring with unity

1 0 . .\ . T
{0 | } under matrix addition and matrix multiplication.

Any non zero element of M will be { ey oy W}

—(u—iv) x-iy

where x, y, u, v are not all zero.

x—1iy u+iv

One can check that the matrix | ¥ . k.
u—iv  x+iy
k k

where k=x?+)? +u*+1?, will be multiplicative inverse of the above non zero
matrix, showing that M is a division ring. But M will not be a field as it is not
commutative as

0 —i

- 0

ol
WL

Example 12: Consider

D={a+bi+c+dk|a,b,c,deR} with *=7>=k*=—1, then D forms
aring.

Two elements a + bi + ¢j + dk and a' + b'i + ¢'j + d'k are equal iff a =
a,b=>b,c=c,d=4d.

Addition and multiplication on D are defined by

(a+bi+tc+dk)y+@+bi+cj+dk)y=@+a)+b+b)i+(c+c)
+(d+ d)k

and

I
—
L o
o -
1
L
—
l o
o U
[ I
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(a+bi+c+dk)(@ +bi+cj+dk)=(aa —bb —cc'—dd)+ (ab' + ba’
+cd —dc)i + (ac' — bd' + ca' — db")j + (ad' + bc' — ab" + da')k

The symbol + in the elements of D is just a notation and is not to be a confused
with addition in real numbers. We identify element o + 1i + 0j + ok by i and so on.

Thussince i=0+1i+0j+ 0k

j=0+0i+ 1+ 0k

We have ij =k, ji = —k, etc., In fact that shows that D is non commutative. D
hasunity 1 =1+ 0i + 0j + 0k

If a + bi + ¢j + dk be any non zero element of D (i.e., at least one of a, b,
(a—bi-cj—dk) _

a?+b* + P +d?

1.

¢, d is non zero) then (a + bi + ¢j + dk)

Hence D is a division ring but not a field.
The elements of D can also be written as quadruples (a, b, ¢, d).
This ring D is called the ring of quaternions.

Theorem 3: 4 field is an integral domain.

Proof: Let<R,+,.>be afield, then R is a commutative ring.

Let ab=0in R. We want to show either @ =0 or b = 0. Suppose a # 0, then
a! exists (definition of field)

thus ab=10
= a!(ab)=a'0
= b=0.

which shows that R is an integral domain.

Remark: Similarly we can show that a division ring is an integral domain and
thus has no zero divisiors.

A ‘partial converse’ of the above result also holds.
Theorem 4: A non zero finite integral domain is a field.
Proof: Let R be a non zero finite integral domain.
Let R’ be the subset of R containing non zero elements of R.
Since associativity holds in R, it will hold in R'. Thus R’ is a finite semi group.

Again cancellation laws hold in R (for non zero elements) and therefore, these
holdin R'.

Hence R’ is a finite semi group w.r.t. multiplication in which cancellation laws
hold.

. <R',.>forms a group. Note closure holds in R" as R is an integral domain.

In other words <R, +, - > is a field (it being commutative as it is an integral
domain).



Aliter: Let R= {a,, a,, ...., a,} be a finite non zero integral domain. Let 0 = a
€ Rbe any element then aa, aa,, .....,aa, areallin Rand if aa, = aa, for some
i #J, then by cancellation we geta, = a; which is not true. Hence aa, aa,, ...,
aa, are distinct members of R.

Since a € R, a = aa, for some i
Let x € R be any element, then x = aa, for some j
Thus ax = (aa)x = a(ax)
ie., xX=ax
Hence using commutativity we find
X=ax = xa,
or that a; is unity of R. Leta, = 1
Thus for 1 € R, since 1 = aa, for some k

We find a is multiplicative inverse of a. Hence any non zero element of R has
multiplicative inverse or that R is a field.

Example 13: An infinite integral domain which is not a field is the ring of integers.
Definition: A ring R is called a Boolean ring if x> = x for all x € R.

Example 14: Thering {0, 1} under addition and multiplication mod 2 forms a
Boolean ring.

Problem 2: Show that a Boolean ring is commutative.
Solution: Let a, b € R be any elements

Then a+ b € R (closure)

By given condition
(a+b’=a+b
+b+ab+ba=a+b

=
= atb+tab+tba=a+b
= ab+ba=0
= ab =-ba (1)
= a(ab) = a(-ba)
= a’b=—aba
= ab=-aba ..(2)
Again (1) gives
(ab)a = (-ba)a
= aba =—ba* =-ba ..(3)
(2)and (3) give
ab = ba (= — aba)
or that R is commutative.
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Problem 3: Show that order of a finite Boolean ring is of the type 2", n =
0,1, 2,..

Solution: : Let <R, +, .> be a finite Boolean ring. Then a*=a VY aeR,
Thus (a+a)Y=a+a

= d+a*+2aa=a+a

= 2a*>=0orthat2a=0 VaeR
Thus each non zero element in the group < R, +> has order 2.

By Cauchy's theorem in groups, we know if p is any prime dividing o(R) then 3
X € R, s.t., o(x) = p. But order of each non zero element is 2 and thus 2 is the
only prime dividing o(R). Hence o(R) = 2".

Problem 4: (a) Show that a non zero element a in Z, is a unit iff a and n are
relatively prime.

(b) If a is not a unit then it is a zero divisor.
Solution: (a) Z, = {0, 1, 2, ...... ,n—1} modn
Leta € Z be aunit,thend b € Z s.t.,
a®b=1
i.e., when ab is divided by n, remainder is 1, in other words,
ab=nqg + 1
or ab-ng=1
= aandn arerelatively prime.
Conversely, let (a, n) = 1, then 3 integers u, v s.t.,
au + nv =1
= au=n(-v)+1
Suppose, u=nqg +r, 0<r<n, rel,
Then au=anqg +ar =n(—v)+1
= ar =n(-v-aq)tl, relZ
ie., a®r=1, rel,
ie., a is a unit.
(b) Let a be not a unit and suppose g.c.d(a, n) =d > 1
Since d | a, a = dk for some k. Alsod |n = n=dt

:>a.t=dk§=kn=0modn

i.e.,als azero divisor.



Remark: InZ , the set of units is U, . Thus for instance, in Zg 1,3, 5, 7 are units.

Problem 5: Show that z,= {0, 1, 2, ....., p =1} modulo p is a field iff p is
a prime.

Solution: Let Zp be a field. Suppose p is not a prime, then 3 a, b, such that p
=ab,1<a,b<p

= a ® b =0 where a, b are non zero = Zp has zero divisors.

Le Z, is not an integral domain, a contradiction as Z, being a field is an integral
domain.

Hence p is prime.

Conversely, let p be a prime. We need show that z, is an integral domain (it
being finite will then be a field).

Let a®b=0 a,beZp
Then ab is amultiple of p
= plab

= plaorp|b (pbeing prime)
= a=0or b=0 (Notice a, b eZp:>a,b<p)
= Z, is an integral domain and hence a field.
Remark : (i) We can also use problem 4 to prove this result.
(if) Since Zp is afield, all its non zero elements are units by definition of a field.

Problem 6: Ifin a ring R, with unity, (xy)* =x%** for all x, y € R then show
that R is commutative.

Solution: Let x, y € R be any elements
then vy+leR aleRr
By given condition
(x(y + 1)) =x* (v +1)?
= (y+x)?=x*@+ 1)
= () + 2 +xx+ay=x07+ 1 +2y)
= xzy2 + X+ xyx +xxy = xzy2 +x2 + 2x2y
= xyx = x%y (1)

Since (1) holds for all x, y in R, it holds for x + 1, y also. Thus replacing x by
x+ 1, we get

(x + 1) y(x +1) = (x +1)%y
= (xy+y) (¢ +1) = ( +1 +2x)y
= xyx+xy+yx+y=xy+y+ 2y
= yx =xy using (1)

Hence R is commutative.
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Problem 7: Show that the ring R of real valued continuous functions on [0,
1] has zero divisors.

Solution: Consider the functions fand g defined on [0, 1] by

1 1
= ——X, <x<—
f(x) 5 O_x_2
1
=0, —<x<1
2
and  g(x)=0, os;cs%
Zx—l, leSl
27 2

then f'and g are continuous functions and f# 0, g # 0

whereas g f(x)= g flx) =0. (%_x] if0<x<

= (x—l].o =0ifl£xél
2 2

ie., g f(x)=0 for all x
ie., gf=0butf=#0,g=0.
Subrings

Definition: A non empty subset S of a ring R is said to be a subring of R if S
forms a ring under the binary compositions of R.

The ring < Z, +, . > of integers is a subring of the ring <R, +, . > of real
numbers.

If Ris aring then {0} and R are always subrings of R, called trivial subrings
of R.

It is obvious that a subring of an integral domain will be an integral domain.

In practice it would be difficult and lengthy to check all axioms in the definition
of'aring to find out whether a subset is a subring or not. The following theorem
would make the job rather easy.

Theorem 5: A non empty subset S of a ring R is a subring of R iff a, b € S
=ab,a—-b e S.

Proof: Let Sbe a subring of R
then a,b €S = ab € S (closure)
a,beS=a-becS
as < S, +>1is a subgroup of <R, + >.

Conversely, sincea,b € S= a—b € S, we find <S, +> forms a subgroup
of <R, +>. Again for any a, b € S, since S R



a,beRrR
=>at+tb=b+a
and so we find S is abelian.

By a similar argument, we find that multiplicative associativity and distributivity
hold in S.

In other words, S satisfies all the axioms in the definition of a ring.
Hence S'is a subring of R.

Definition: A non empty subset S of a field F'is called a subfield, if S forms a
field under the operations in £ Similarly, we can define a subdivision ring of a
divisionring.

One can prove that S will be a subfield of Fiffa, b €S,b#0 = a - b,
ab! €8.

We may also notice here that a subfield always contains at least two elements,
namely 0 and 1 of the field. (Recall a subgroup contains identity of the group and
a subfield is a subgroup of the field under both the compositions).

Sum of Two Subrings

Definition: Let S and 7 be two subrings of a ring R. We define
S+T={s+t|seS teT}
then clearly S + 7 is a non void subset of R. Indeed0=0+0 € S+ T.

But our enthusiasm of defining the sum ends here when we find that sum of two
subrings may not be a subring.

Take for instance the ring M of 2 x 2 matrices over integers.

. 0 .
Let S = set of all matrices of the type B 0} a, b integers, and

. 0 .
T = set of all matrices of the type L) g} , X an integer.
Then S and T are subrings of M, (an easy exercise for the reader).

S+ T would have members of the type B g} + B ;}

. . a ¢
i.e., matrices of the type L 0}

That S+ 7 does not form a subring follows from the fact that closure w.r.t.
multiplication does not hold, as
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1 12 2 4 2
= gS+T.
bola o)=L 7]
Characteristic of a Ring

Definition: Let R be aring. If there exists a positive integer n such that na=0
for all a € R, then R is said to have finite characteristic and also the smallest
such positive integer is called the characteristic of R.

Thus it is the smallest positive integer n such that 1 + 1+ ....... +1=0inR.
n times
If no such positive integer exists then R is said to have characteristic zero (or
infinity).
Characteristic of R is denoted by char R or ch R.

Example 15: (a) Rings of integers, even integers, rationals, reals, complex numbers
are all of ch zero.

(b) Consider R = {0, 1} mod 2
thench R =2 as
2.1=1®1=0
2.0=000=0
thus 2 is the least +ve integer s.t., 2a =0 for all @ € R.
Note 1.1=1=0

Product of Rings

Let R, and R, be two rings.

LetR=R, xR,={(a,b)|a € R, b € R,}, then it is easy to verify that R
forms a ring under addition and multiplication defined by

(ay, b)) * (ay, by) = (a) + ay, b, + b,)

(a,, b)) . (ay, b,) = (a,a,, b,b,)

1.e., under the usual compositions of component wise addition and multiplication.
This ring is called the direct product of R, and R,. One can similarly extend the
definition to product of more than two rings. R, and R, are called the component
rings of the direct product.

Check Your Progress

1. Give two examples of commutative rings.
2. Whatis an integral domain?

3. Whatisadivision ring?

4. Whatis a field?




8.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS
1. Set of real numbers and rational numbers w.r.t. usual addition and

multiplication.

2. A commutative ring R is called an integral domain if R has no zero divisors.

. Aring R with unity is called a division ring or a skew field if non-zero elements

of R form a group w.r.t. multiplication.
A commutative division ring is called a field.

8.5

SUMMARY

Ring is a set having an addition that must be commutative (@ +b=b +a for
any a, b) and associative [a + (b +c)=(a+ b) + cforanya, b, c], and a
multiplication that must be associative [a(bc) = (ab)c for any a, b, c]. There
must also be a zero (which functions as an identity element for addition),
negatives of all elements (so that adding a number and its negative produces
the ring’s zero element), and two distributive laws relating addition and
multiplication [a(b+ ¢)=ab +ac and (a + b)c=ac + bc forany a, b, c].
A ring R is called a commutative ring if ab = ba for all a, b £R.

If3 anelemente € Rs.t., ae=ea=a forall a € R we say, R is aring with
unity. Unity is generally denoted by 1. (It is also called unit element or
multiplicative identity).

Let Rbe aring. An element 0 # a € R is called a zero-divisor, if an element
OebeRst,ab=0o0rba=0.

A commutative ring R is called an integral domain if R has no zero divisors.

An element a in a ring R with unity, is called invertible (or a unit) w.r.t.
multiplication if some b € R suchthatab=1=ba.

A ring R with unity is called a Division ring or a skew field if non-zero
elements of R form a group w.r.t. multiplication.

A commutative division ring is called a field.
Aring R is called a Boolean ring if x*=x forall x € R.

A non-empty subset S of aring R is said to be a subring of R if S forms a ring
under the binary composition of R.

8.6

KEY WORDS

Modulo: The modulo operation finds the remainder after division of one
number by another.
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e Commutative: involving the condition that a group of quantities connected
by operators gives the same result whatever the order of the quantities
involved, e.g.axb=DbXxa.

¢ Integral domain: an integral domain is a non-zero commutative ring in
which the product of any two non-zero elements is non-zero.

¢ Identity element: an identity element is a special type of element of a set
with respect to a binary operation on that set, which leaves other elements
unchanged when combined with them.

¢ Inverse: an element a in a set with a binary operation, an inverse element
for a is an element which gives the identity when composed with a.

8.7 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions
1. Write a brief note on a Ring.
2. Define commutative ring.
3. Show that Z, = {0, 1, 2, 3, 4, 5, 6} forms a ring under addition and
multiplication modulo 7.
4. Show thatinaring R, a.0=0.a foralla €R.
5. What is a Boolean ring? Give an example.

Long Answer Questions

1. Prove that acommutative ring R is an integral domain iff forall a, b, c € R
(a#0)ab=ac=b=c.

2. Show that a field is an integral domain.

3. Show thatif 1 —ab is invertible in a ring with 1 then so is 1- ba.

4. Let R be acommutative ring with unity. Show that
() aisaunitiffa’ isaunit. (ii) a, b are units iff ab is a unit.

5. Show thataring R is commutative iff
(a+b)y=a*+b*+2abforalla, b € R.
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9.0 INTRODUCTION

This unit discusses about ideals, quotient rings and ring homomorphism. In ring
theory, an ideal is a special subset of a ring. Ideals generalize certain subsets of the
integers, such as the even numbers or the multiples of 3. An ideal can be used to
construct a quotient ring similarly to the way that, in group theory, a normal subgroup
can be used to construct a quotient group. In ring theory or abstract algebra, aring
homomorphism is a function between two rings which respects the structure. The
composition of two ring homomorphism is a ring homomorphism. It follows that
the class of all rings forms a category with ring homomorphism as the morphisms.
In particular, one obtains the notions of ring endomorphism, ring isomorphism,
and ring automorphism.

9.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Know about Ideals
¢ Discuss quotient rings

e Understand the concept of ring homomorphism
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9.2 IDEALS

The notion of an ideal in a ring is parallel to the concept of normal subgroup in
groups. The normal subgroups led us to the formation of quotient groups, ideals do
the job when we define quotient rings. Many analogous results follow. We start with

Definition: A non empty subset / of a ring R is called a right ideal of R if
({a,bel=a-bel
(ilael,rer=arel
1 1s called a left ideal of R if
(Ha,bel=>a-bel
(ilael,re R=>racl

I is called a two sided or both sided ideal of R, if it is both left and a right ideal.
In fact, if we say / is an ideal of R, it would mean, / is two sided ideal of R.

Example 1: In aring R, {0} and R are always both sided ideals.

Any ideal except these two is called a proper ideal (In fact, the name non trivial
ideal will be more appropriate).

Example 2: Let <Z, +, - > be the ring of integers. Then
E = set of even integers is an ideal of Z
a,be E=a=2nb=2m
Thus a—-b=2(mn-m)eE
Again, if 2n € E, r €Z then as
(2n)r or r(2n) are both in E, E is an ideal.

Example 3: Let R=ring of 2 x 2 matrices over integers.

b
Let A= {a }|a, b integers}
0 0

then 4 is aright ideal of R as

a b c d a—-c b-d
- = €A
0 0 0 0 0 0
a bllx y ax+bz ay+ba
= €A
0 0llz u 0 0

But 4 is not a left ideal of R as

0 2 00
el, eR
oo



0 00 2 00
But = gA.
ol
Problem 1: Let R be a ring such that every subring of R is an ideal of R.
Further,ab =01in R = a =0 or b = 0. Show that R is commutative.

Solution: Let 0 # a € R be any element.

Then N(a) = {x € R | xa= ax} is a subring of R and, therefore, an ideal of
R. Let r € R be any element. Since a € N(a), r € R we find ra € N(a) (Def.
ofideal)

Alsothen, a(ra)= (ra)a

and so (ar—ra)a=0
= ar—ra=0 asa=#0
Thus ar=ra ¥V reR V 0%aeR

and as 0.7 = .0 = 0 we find
ar=ra V a,r € R
Hence R is commutative.
Sum of Two Ideals
Let 4 and B be two ideals of a ring R. We define 4 + B to be the set
{a+b|ae€Ad, b e B}, called sum of the ideals 4 and B.

Theorem 1: If A and B are two ideals of R then A + B is an ideal of R,
containing both A and B.

Proof: A+ B#¢pas0=0+0e€A4+8B
Again, x,y€eA+B
=>x=a, +b,

y=a,+b, forsomea,a, € 4, b,b, eB

Since X—y =(a, + b)) —(a, + b,)

=(a, —a,) + (b, - by)

we find x—yeA+B

Letx=a+b € A+ B, r € R be any elements then
xr=(a+byr=ar+bre A+ B as A, B are ideals
rs=ra@a+b)y=ra+rbe A+B

Thus A4 + B is an ideal of R.

Again for any a€Ad sincea=a+0eA+B
and for any beB,sinceb=0+beA+B
wefind Ac A4+ B

BcA+B.
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Definition: Let S be any subset of a ring R. Anideal 4 of R is said to be generated
by §if

(i) Sc4
(@) forany ideal /of R, Sc /= A c 1.
We denote it by writing 4 =< 5> or 4 = (9).

In fact <S> will be intersection of all ideals of R that contain S, and is the
smallest ideal containing S. If S is finite, we say 4 = <S> is finitely generated.

If S = ¢ then as {0} is an ideal of R containing S = ¢, <S> c {0} and so
<§>={0}.

If S = {a} then we denote <S> by <a > or (a) and this case is of special
interest to us as it is used rather extensively. By definition, a € <a>and as it
is an ideal, elements of the type ra, as, r| as|, na are in <a >, where r, r, s,
s, € Rand n is an integer. Such an ideal is called a principal ideal generated by
a. One can verify that

(7)) IfRisacommutative ring, then

<§>= {anxi+2rjyj|nl. €Zr,eRx,y € S}

(#7) If Ris commutative with unity then
<8§>={2rylr e Ry €8}

(#ii) If S= {a}, then
<a>=<S§S>={natratastxay|nel,rs x,yeR}

(iv) Further if R has unity
<a>={Xxay|x,y € R}

Summation being finite everywhere.

Theorem 2: If A and B be two ideals of a ring R, then

A+B=<AUB>

Proof: We have already proved that 4 + B is an ideal of R, containing 4 and B,
thus 4 + B is an ideal containing 4 U B.

Let / be any ideal of R, s.t, AU B/
Let x € A+ B be any element
Then x=a+b forsomeaec A, beB

Since
acAcAuVBcl]

beBcAuBcl
wefinda+b e/ as/isanideal
= xelorthatA+Bc/

which proves the theorem.



Thus 4 + B is the smallest ideal of R, containing 4 and B. One can, of course,
talk about sum of more than two ideals in the same manner.

Problem 2: If aeR be an element and [ = aR = {ar |r €R} where R is a
commutative ring, then I is an ideal of R.

Solution: /#@pas0=a.0e/
x,yel=>x=ar,y=ar,forsomer,r, e R
> x-y=a(r,—-r,) el
again if x = ar; € I and r € R be any elements

thenx r=(ar|) r=a (r, r) €l shows that /is aright ideal. R being commutative,
it will be both sided ideal.

Remark: If the ring is not commutative, one can show that aR is a right ideal and
Ra = {ra|r eR} is aleft ideal of R.

aR is always contained in < @ >. If R is a commutative ring with unity then
aR = Ra = (a).

Let us understand the difference between aR and < a > through the following
example.

Example 4: Let < E, +, - > be the ring of even integers. It is commutative ring
without unity, Leta=4 € E.

Then <4> ={4n+ (2m)4|n, me 1}
={4n+8m |n,m € 1}

whereas 4E = {4(2k) |k e Z} = {8k |k € Z}

We notice then, <4 >=#4E as 4 € <4 >but 4 ¢ 4E.

Problem 3: If 4 is an ideal of a ring R with unity such that 1 € A then show
that A = R.

Solution: Since 4 — R always, all we need show is that R — 4.
Let € R be any element.
Since 1 €4 and A4 is an ideal

r=1.red
= Rc Aorthat 4 =R.

Product of Two Ideals

Let A4, B be two ideals of a ring R. We define the product 4B of 4 and B by
AB={Xab,|a, € A, b, € B}
where summation is finite.

Theorem 3: The product AB of any two ideals A and B of a ring R is an ideal
of R.
Proof: AB#¢pas0=0.0¢e 4B
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Let x, y €4B be any two members

then x=ab, +ab,+ ... +ab
y=ab + .. +a b,

for some a,, a']. €A, b, b'], eB
x-y=(ab +..+ab)- (Db +... +a, b )

which clearly belongs to AB, as the R.H.S. can be written as

where x, €4, y, €B.
Again, forany x =a,b, + ... +a b, € AB and r €R,
rx=r(ab, + ... +ab,)
= (ra,)b, + (rayb, + ..... + (ra, )b, € AB
because ra, € Aasa, € A, r € R, and 4 is an ideal.
Similaly  xr € AB
showing thereby that AB is an ideal of R.
Remarks: (i) Let S = {ab|a €4. b €B}
then < S§>=4B.
Clearly S < AB and as AB is an ideal, < § > < 4B.
Again, x €eAB => x=ZXab,a;, € A, b, € B
a,€ A, b, eB
=ab, eSS, vi=1,2, ..,
=ab,e<S>Vi
=>xe<S>
=2 ABcCc <S§>
and hence < §> = A4B.

(i) If R is a commutative ring with unity and 4, B are finitely generated ideals

of R then so are 4 + Band AB. In fact if 4 =< a,, a,, ...... ,a,>and B=<b,,
by, ...... , b > then
A+B=<a,a,, ..,a,b,b, ., b >
AB =<ab,, ...,a,b, ....,ab,, ..., ab >

This, however, may not be true for 4 N B.
The following problem gives us little more information about product of ideals.
Problem 4: [f A, B, C are ideals of a ring R, s.t., B < A then show that
ANB+C)=ANB)+ANC)y=B+(AnC).
Solution: Let x € 4 N (B + C) be any element
Then xeAadxe B+C



= x=b+tcforsomeb € B,c eC
NowbeBcAd,alsob+c=x€cA4

= (bt+tc)—-bed

= ct+tb-bed

= ceAd

=>xednC
ie,x=b+c,beB,ceAnC
thus xeB+ANC)
Hence ANnB+CO)cB+AnNC).
Againlet xeB+UAnNCO)

Then x=b+kforsomebeB, keAnC
Since beB keC
x=b+keB+C
and beBcA keAd=b+keAd
= xed
=>xednB+C)

or that B+ANCO)cAn(B+0)

which finally gives AN (B+C)=B+(ANC)

Also as BcA,AnNB=B8B

thus ANB+CO)=AnNB)+ANCO)=B+ANC).
Remark: The above is sometimes called modular equality.

Definition: A ring R # {0} is called a simple ring if R has no ideals except R
and {0}.

Theorem 4: A4 division ring is a simple ring.
Proof: Let R be adivision ring. Let 4 be any ideal of R s.t., 4 # {0} then 3 at

least one @ € A s.t., a # 0. R being a division ring, ! € Rand aa ' = 1.
Since ac A, a'leR, aa! € A (def. of ideal)
= 1led
= 4=R

i.e., only ideals that R can have are R and {0} or that R is a simple ring.

Problem 5: Let R be a ring with unity, such that R has no right ideals except
{0} and R. Show that R is a division ring.

Solution: All that we need prove is that non zero elements of R form a group
under multiplication.

Let 0 # a € R be any non zero element.
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Let aR = {ar|r eR}
Then aR is aright ideal. See problem 2.
By given condition, then

aR=R
or aR = {0}
ButaR # {0} asa#0and a=a.1 € aR
Hence aR = R.

Nowl € R=1eaR=3b e R,s.t. | =ab = bisright inverse of a (w.r.t.
multiplication). Thus <R — {0}, ->is a system in which associativity holds, right
identity (unity) and right inverse exist (for every element).

i.e.,<R— {0}, ->forms a group or that R is a division ring.

9.3 QUOTIENT RINGS

Let R be aring and let / be an ideal of R. Since a, b € [ = a—b € I, we find
1 is a subgroup of <R, +>. Again as < R, + > is abelian, / will be a normal

subgroup of R and thus we can talk of ?, the quotient group

? ={r+1|r e R} =setofall cosets of / in R (clearly left or right cosets are

equal).
We know R/I forms a group under ‘addition’ defined by
r+D+(s+1)=@F+s)+1
We now define a binary composition (product) on R/I by
r+D-(s+1)=rs+1
We show this product is well defined
Let r+l=r+lands+/1=s5"+1
=>r—relands—-s" el
=r—r=aands—s =bforsomea, b el
=>r=r+a,s=s+b
=>r=@+r)b+s)
=>rst+l=(@b+as"+rb+r's)+I1=rs+1
(usingx + I =1iffx € I)
Hence the multiplication is well defined.

Since (a + D[(b + D(c + )]
=(a+D(bc+1D



=a(bc) + 1
= (ab)c +1
=(ab + D(c+ 1)
= [(a+ Db+ DI(c + 1)
Associativity holds w.r.t. this product.
Again, as (a + D[(b + D) + (c + D] =(a+Db+ct])
=ab+c)+l1
=(ab + ac)+1
=(ab+ 1)+ (ac+1)
=@+ Db+D+(a+Dc+])

We find left distributivity holds. Similarly one can check that right distributivity
also holds in R/I and hence R/I forms aring, called the quotient ring or factor
ring or residue class ring of R by I.

We look at it from another angle. Let R be aring and / an ideal of R. Define,
fora,b € R,a=b (mod)ifa—b e I It is easy to check that this relation is
an equivalence relation on R. Thus it partitions R into equivalence classes. Let for
any a € R, cl(a) be the corresponding equivalence class of a.

Then cllay={r+R|r=a(mod )}
={reR|r—acel)}
={reR|r—a=xforsomex e I}
={re R|r=a+x for some x € [}
={a+x|xel}
=a+1

Thus, the quotient ring ? is nothing but the ring of all equivalence classes as

defined above.
In fact, the binary compositions defined earlier would translate to
cl(a) + cl(b) = cl(a + b) a,beRrR
cl(a) . cl(b) = cl(ab)

It would be an interesting exercise for the reader to verify that R/ thus defined
forms aring. In fact, if R has unity 1 then c/(1) will be unity of R/I.

R/I 1s therefore also called quotient ring of R modulo /.

Remarks: (i) It may be noticed that R/I is defined only when / is an ideal of R.
If I happens to be only a subring of R then R/l may not form a ring as there the
multiplication rule may not be valid. Suppose / is only a subring of R (and is not
an ideal) thenletr € R,a € Is.t.,ar ¢ L.
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Then (a+Dr+Dh=ar+1

gives O+DH(r+Dh=ar+l

1e., 0.r +1=ar+ I or that ar € I which is not true.
(7i) If I = R then R/I is isomorphic to the zero ring {0} and if / = {0} then
R
1

Example S: Let /1, = {4n | n € Z}, where <Z, +, - > is the ring of integers. Then

H, is an ideal of Z and thus H£4 is a quotient ring and is given by

Z
H—4={H4,H4+1,H4+2,H4+3}

This example also shows us that quotient ring of an integral domain may not
be an integral domain.

Notice (H, +2) (H, +2) = H, + 4 = H, = zero of H% but H, +2 = H,
On the other hand if we cosider
R=1{0,2,4,6,8, 10} mod 12
S={0,6} mod 12
then R is not an integral domain whereas R/S is an integral domain.
We have RIS={S,S+2,5+4}
Since(S+2)(S+2)=5S+2, §+2)(S+4)=5+8=85+2
and (S+4)(S+4)=(S+16)=S5+4, we find

R ..
5 has no zero divisors.

9.4 RING HOMOMORPHISMS

Let<R,+,.>,<R',* o>Dbe two rings. Amapping &: R — R’ is called a
homomorphism if

Aa + b)= Aa) * 0(b)
Aab) = &a) o 6(b) a,beR
Since we prefer to use the symbols +and . for the binary compositions in a
ring, we will use these symbols, even while dealing with more than one ring. In
that case, the above definition simplifies to saying that a mapping €: R — R’ is
called a homomorphism if



&a + b) = &a) + AD)
Aab) = Ka) . Ab)

One can similarly talk about isomorphism 1in rings as a one-one onto
homomorphism.

Example 6: Consider the map /: C - C, s.t.,
fa+ib)y=a—-ib
then fis a homomorphism, where C = complex numbers,
as fl(a+ib)+(c+id)]=f((a+c)+ib+d)
=(a+tc)—i(bt+d
=(a—ib) t+ (c—id)
=f(a+ib)+ f(c+id)
and  f[(a+ib) (c +id)] =f((ac — bd) + i (ad + bc))
= (ac — bd) — i (ad + bc)
=(a—1ib) c—id (a - ib)
= (a —ib) (c — id)
=f(a+ib) f(c+id)
Example 7: Let R be acommutative ring and suppose px = 0 for all xe R, where

p is a prime number. Then the mapping /: R — R defined by f'(x) =x",x € R
is ahomomorphism.

In fact the result follows rather easily, if we can show thatp | p,. 1 <r<p-—1.

p!

Now n :pcr:m

_ p(p—1)... (p—r+D(p—r)!
(p—m'1.2..r

= n!l=pp-1)..p-r+1)
Since p divides R.H.S., it will divide nr!

= p | norp | r! (whenever a prime divides product ab, it must divide at least
oneofaorb).Butp + rlas 1,2, .., r—1areall less than p, so p cannot divide
any one of them. Thus p + r!

Le., pln
Now for any x, y € R
fE+y)=Ga+yP=x+po @ y+po, @ 7Y+ L+
(R being commutative)
Nowp, ¥ ly=p1y=0 as ¥'yeR
Py ¥2yr= (kp) ¥’ 2)y* = Oasp |Pey = Py = kp for some k
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Similarly each p ., would be some multiple of p giving that other terms are also zero.
Hence f(x + y) = x" + )7 = f(x) + f()
Also f(xy) = ()Y =x"" (R commutative)
=S )
Thus f1s a homomorphism.
Theorem 5: If : R — R’ be a homomorphism, then
(i) &0) =0
(if) A—a) =—-&a)
where 0, 0" are zeros of the rings R and R’ respectively.
Proof: (i) Since0 + 0= 0
wehave A0+ 0)= &0)
= &0)+ A0)= &0) + 0’
= a0)= 10’
(ii) Again,as a + (—a) =0
Xa + (—a)) = &0)
= Ha)t+tHd-a)=a40)=0
= —&a)=0 (-a)
Cor.: It is clear that
&a—b)= &a+ (- b))
= &a) - AD)

Remark: The terminology of epimorphism, monomorphism etc. is extended to
rings also in the same way as in groups.

Definition: Let /: R — R’ be a homomorphism, we define Kernel of f by
Kerf={xeR|f(x)=0"}
where 0’ is zero of R'.

The following two theorems are easy to prove so we’ll state the results without
proof.

If: R — R’ is ahomomorphism then
Theorem 6: Ker f'is an ideal of R.
Theorem 7: Ker f = (0) iff f is one-one.

Problem 6: If R is a ring with unity and f: R — R’ is a homomorphism where
R' is an integral domain such that Ker f # R then show that f (1) is unity of
R'.

Solution: Let a' eR' be any element. We show

fya =daf(h)=a



Now f(Ma—-f1)a =0
=>fA)ad-f(1)a =0
= f() S a-f)ya =0
=) d-a]=0
=either f(1)=0"orf(l)a'—a" =0"as R'is an integral domain.
f(1)=0"=1 € Ker f= Ker f= R which is not true.
Hence f (1)a’ —a'= 0’
= f(Ha=d
Similarly, we can show a’ = a'f(1).

Problem 7: Let f: R — R' be an onto homomorphism, where R is a ring with
unity. Show that f (1) is unity of R'.

Solution: Let a’ € R’ be any element.
Since fis onto, 3 a € R, s.t., f(a) =a’
Now d.f()=f(a).f(D)=f(a.1)=[f(a)=d
Similarly /(1) . @' = a'.
Showing, thereby that /(1) is unity of R'.

Problem 8: Show by an example that we can have a homomorphism f :
R — R, such that f (1) is not unity of R', where 1 is unity of R.

Solution: Considerthemap f:Z — Z, s.t.,
f(x)=0 forallx € Z
where Z =ring of integers
then fis a homomorphism (verify)
Again f(1) =0, but 0 is not unity of Z.
Thus although Z (on R.H.S.) has unity it does not equal f(1).

Remarks: (i) If we take the map /: Z — E, where E = ring of even integers,
defined by f(x) = 0 for all x, we find, E does not have unity, whereas 1 is unity
of Z.

(i7) We recall that the map f: Z — E, s.t., f(x) = 2x is a group isomorphism.
Thus Z and E are isomorphic as groups whereas Z and E are not isomorphic as
rings. Indeed, Z has unity but E does not possess unity. In fact, fwill not be aring
homomorphism.

Problem 9: Find all the ring homomorphisms from Z,, — L.
Solution: Letf: Z,) — Z,,be any ring homomorphism.

Let f(1) = a, then f{x) = xa and we find o(a)|o(Z,)) = 30 and o(a) |20 =
0(Z20)
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Thus possible values of o(a) are 1, 2, 5, 10 and so possible values of a will be
0,3,6,9,12, 15,18, 21, 24, 27

which give us the ten group homomorphisms.

Since f1s a ring homomorphism andinZ, , 1.1 =1, we find f(1.1) =£1)

or DM =A1)

or a@=ainZ,

This is satisfied by 0, 6, 15, 21 values of a .

Hence there exist four ring homomorphisms from Z,) - Z, .

207

Problem 10: Let Z be the ring of integers. Show that the only homomorphisms
from L — Z are the identity and zero mappings.

Solution: Letf: Z — Z be a homomorphism
Since (£ (1))* = £ (1) f(1) = f(1.1) = £ (1)

SO -11=0
= /(1)
=0orf(l)=1

If f(1)=0 then f(x) =0 V integers x

as SO=fAx)=f1)fx)=0-f(x)=0Vx

Thus in this case fis the zero homomorphism.

If f(1)=1, then forany x € Z
fO=fA+1+.+)=xf(1)=x (x>0)
JO=f)=-f(=-"A+1+.+ D= f(D=xf(1)=x

(x<0,y=-x)
f(0)=0

So in this case fis identity map, which proves the result.

Theorem 8: (Fundamental Theorem of Ring Homomorphism)
Iff: R —> R' be an onto homomorphism, then R' is isomorphic to a quotient

R
Ker /'

ring of R. In fact, R' =
Proof: Letf: R — R’ be onto homomorphism

Define ¢ : — R, s.t.,

Ker f

o(x +1)=f(x) forall x € R where I = Ker f
then ¢ is well defined as
x+tI=y+1
= x—yel=Kerf



= fx-»=0
= f@)-/()=0
= f)=/0)

= ox T hH =0+

Retracing the steps backwards we prove ¢ is 1-1.

Again, as
elx+ D+ +D] =o(x+y)+D=fx+y)=fx)+f()
=0+ D)+ oy +)
olx + Dy + D] =y + D=1y =f(x)[©)
=ox+1D) o+
¢ is a homomorphism.

Now if 7 € R’ be any element then as f: R — R’ is onto, 3 r € R, s.t.,
f(r)y=r forthisr,as (r + ) =f(r)="r

We find r+ I is required pre-image of 7 under ¢ showing thereby that ¢ is onto
and hence an isomorphism.

= R'. By summetry R’ = R

Thus .
Ker f Ker f

Theorem 9: (First Theorem of Isomorphism)
Let B < A be two ideals of a ring R. Then

E: R/B
A AIB
. R R
Proof: Define a mapping f:E—>Z s.t.,
f(r+B)=r+4
then fis an onto homomorphism (Prove!)

By fundamental theorem, R RiB
A Kerf

Again, since r + B € Ker f < fir+t+B)=4
Sr+A=4
ored
&Sr+B eé
B

we find Ker /= A/B
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Theorem 10: (Second Theorem of Isomorphism)
Let A, B be two ideals of a ring R, then

A+B_ B
A ~AnB’
Proof: Define a mapping f: B — A+ 5 s.t.,

f(b)y=b+ A4 forallb € B

Then f is a well defined homomorphism.

A+ B

Againifx+4 e be any element then

xeA+B=>x=a+b, ac A, beB
So, x+A=(@+b)+A=(b+a)+Ad=b+(@a+A)=b+4
thus x+A=b+A4=f(b)
i.e., b is the pre-image of x + 4 under f or that f'is onto.

A+ B B

~

A Ker f
Now x e Kerf< f(x) =4
SxtA=A<xed
(x e Kerfc B)

By fundamental theorem then

SxeAdAnB
Hence Kerf =4 NB

and thus 4+ 2 ;i
A ANB
Remark: Clearly then 478 .4
ANB
Problem 11: Show that z = i.
<2> 10Z

Solution: Take 4 =<2>, B=<15>=5Z, the ideals of Z.
Then 4 + B=<d>, where d =g.cd. (2,5) =1
AN B=<[>where/=1cm. (2,5)=10
So A+B=<1>=1
ANB=<10>=10Z

Hence using the above result that

A+B B V4 5Z
=—— we get =—
A ANB <2> 10Z




Problem 12: Show that Z  can be regarded as a subring of Z iff m | n.
Solution: IfZ, isasubringofZ thenitis a subgroup of Z under addition and so
Conversely, let m | n, and suppose n = um.
Defineamapping 0:Z —Z s.t.,
Oa)=a

Consider 8(a ®  b) = 0(c) = Remainder obtained by dividing a + b by m
and 0(a) ® Ab)=remainder obtained by dividing a + b by n = um = remainder
obtained by dividing a + b by m.

Similarly 0(a® b)=0(a)® Ab)

So, fis aringhomomorphism=Z = 6(Z, )isasubringof Z implyingZ, can
be regarded as a subring of Z.

Problem 13: Show that x* + 1 = 0 has infinite number of solutions over D,
the ring of quaternions.

Solution: Let u = a + bi + ¢j + dk be a solution of x*> + 1 = 0 Then 1> = —1.
Let 6: D — M be the isomorphism

a b
where M= _b —|la,bec
- a

a+bi c+di
s.t.0(a+bi+cj+dk)= . )
—cc—di a-bi
Then 6 (u)>=—@1)=—-1, where I denotes the 2 x 2 identity matrix.
Let O(u)=A= a—i—bl. C+dl.'
—(c—di) a-—bi
Then A?>=—Iand Trace 4 =2a
Now A2=[ a+bi. C+dl:j||: a+bi. c+di]
—(c—di) a-bi||—(c—di) a-bi
_ a*—b*+2abi-c? -d* -
- ~?—d*+a® -b* - 2abi
=-I
implies Trace A>=2(a> — b* — > —d?)=Trace (- )=-2
implies bP+ct+d=a*+1
Now detA=a*+b*+c*+d?
So det A2=(det A= (> +b*+ *+d?)?*=+1
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Therefore, a;+b++d*=1.Butb’+ct+d*=a*+1

So, P+ad+1=1=2=0=a=0

This gives b*+c*+d*=1landu=0+bi+cj+dk

Also O+bi+tcg+dk)}=—bB*++d?)+0i+0/+0k=-1

Therefore, the solutions of x> + 1 =0 are given by u =0+ bi + ¢j + dk, where b?
+*+d =1

There are infinite real numbers b, ¢, d such that 5’ + ¢* + &> = 1. For example, let

p be a prime, then take p = p_l, c=%, d=0.
p

Jr

So, p1ct+d=L2=1 1 L | Butthe number of primes are infinite.
p p
Hence, x?+1=0 has infinite number of solutions over D.
Check Your Progress

1. What is the fundamental theorem of ring homomorphism?
2. Whatisrightideal of aring R?
3. Whatis a simple ring?

9.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Iff : R — R'beanonto homomorphism, then g'is isomorphic to a quotient
ring of g. In fact,

R

'
R Kerf

Iz

2. A non-empty subset / of aring R is called a right ideal of R if
()a,bel=a-bel (i)ael,reR=arel

3. Aring R= {0} is called a simple ring if R has no ideals except R and {0}.

9.6 SUMMARY

¢ A non-empty subset / of aring R is called aright ideal of R if
()a,bel=a-bel ()ael,reR=arel

¢ A non-empty subset / of aring R is called a left ideal of R if
Wa,bel=a-bel ()aelreR=racl



e The quotient ring R// is the set of all cosets of / i.e. all sets a + / for all
a € R. The addition and multiplication operations are those defined for
cosets. The zero element of R//is 1.

o Let<R, +,.>,<R’,* o>Dbetworings. Amapping 0: R — R's called
ahomomorphism if 0 (a+b)=0(a)*0(b)

0 (ab)=0(a)o0B(b) a beR

e et /- R > R’ be a homomorphism, we define Kernel of f by Ker
f={xeR|f(x)=0"} where 0’ is zero of R’.

e Ker fis anideal of R.
e Ker f=(0) iff fis one-one.
e Iff: R >R’ be an onto homomorphism, then R’ is isomorphic to a quotient

ring of R. InfactR" = %,

9.7 KEY WORDS

e Homomorphism: a transformation of one set into another that preserves in
the second set the relations between elements of the first.

e One-to-one: The function is one-to-one if each element of the codomain
is mapped to by at most one element of the domain.

e Onto: The function is (onto) if each element of the codomain is mapped to
by at least one element of the domain. (That is, the image and the codomain
of the function are equal.)

¢ Isomorphism: an isomorphism is a homomorphism or morphism that can
be reversed by an inverse morphism.

9.8 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. Define ring homomorphism.

2. Show that intersection of two ideals is an ideal.

3. IfAisanideal of aring R, let [R: A]={x ER|rx A forall r € R}
Show that [R : 4] is an ideal of R, containing A.

4. Let R and S be two commutative rings with unity and let f: R — S be an onto
homomorphism. If ¢k R # 0, show that ¢/ S divides c/ R.
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Long Answer Questions
1. Show that homomorphic image of a commutative ring is commutative. Prove
also that the converse may not hold.
2. Find all six ring homomorphism from Z;, - Z3.

3. Show that homomorphic image of a ring with unity is a ring with unity but the
converse is not true.

4. Show that there exists an onto homomorphism from R to R/I, a quotient ring
of R.
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UNIT 10 MORE IDEALS RINGS

Structure

10.0 Introduction

10.1 Objectives

10.2 More Ideals Rings

10.3 More Quotient Rings and Related Problems
10.4 Answers to Check Your Progress Questions
10.5 Summary

10.6 Key Words

10.7 Self Assessment Questions and Exercises
10.8 Further Readings

10.0 INTRODUCTION

You have already learned ideals and quotient rings in the previous unit. In this unit,
you will learn more definitions and theorems on ideals and the quotients rings.

10.1 OBJECTIVES

After going through this unit, you will be able to:
e Know more about ideal rings

e Solve problems on quotient rings

10.2 MORE IDEALS RINGS

Definition: Two ideals 4 and B are called comaximal if 4 + B=R.

Theorem 1: If R is a commutative ring with unity and A, B are comaximal
ideals of R, then AB = A N B.

Proof: One can prove that, in general,

ABc AN B

Let now x € 4 N B be any element.
Then x € Aand x €B
Since leR=A4+B

Jaed,be Bst,1=a+b
=>x.1=x.(a+b)
= x =xa + xb
=x=ax +xb

More Ideals Rings

NOTES

Self-Instructional
Material

183



More Ideals Rings

184

NOTES

Self-Instructional
Material

Now ac€Ad, xeB, xe A b eB = ax+xb €4AB
ie., x € AB

or that ANBcAB

and thus AB=A N B.

Theorem 2: Let R be a commutative ring with unity and let I, and I, be two
ideals of R. Then

. R R . .
@Ho:R—> I—lxz, s.t., (x) = (x + 1, x + I,) is a homomorphism s.t.,

Ker o =1, N 1I,.
(ii) 1, and I, are comaximal ideals of R iff ¢ is onto
Proof: (i) We leave it for the reader to verify that ¢ is a homomorphism.
Since xeKerp < okx)=U, 1)
S (x+i,x+1L)=(, 1)
o x+l=1,x+1L =1
< xel,xel,
& xelinl,
we find Ker o =1 N L,.

(i) Suppose @ is onto. Then given (1 +17,0+ 1)) € Iﬁxlﬂ’ Jdx e R, s.t,
1 2

() = (1 +1,, 1)
>+, x+tL)=0+1,1)
>x+tL=1+1, x+1L,=1,
=>l-xel, xel,
>(l-x)+txel+tL=>1el+L=>I1+L=R
or that /, and 7, are comaximal.
Conversely, let I, + I, = R (i.e., I}, I, be comaximal)
Since l e R, 1 e I+, weget 1=x+y, xel, yel,
Now (A+[,L)=@&+y+1,L)
=(y+1,1)
=0+ 1,y 1) =00)
Similarly, (/,, x + 1,) = ¢(x)
R R .
Now for any (a, +1,,a,+1,) € X since
)
(a,+1,a,+L)=0A+1,L)(a,+1,a,+1)+U,1+1L)(a,+1,a,+1I)



= ¢ (o(a,) + e(x)p(a,) More Ideals Rings

= ¢@(ya, + xa,)
we find o is onto.
Remarks: (i) If ¢ is onto, by Fundamental theorem, NOTES
R R R
S —
Kero I, I,
. R R R
ie., = —x—,
LN, I I,

(if) Let R = Z the integers and suppose m, n are co-prime integers.
Then 3 integers x, y s.t.,
l=mx +ny e (m)+(n)
=>@m)+{m =R
= (m), (n) are comaximal ideals

=0 Z—)ixi is onto
(m) (n

Z 7 Z

~

= =~ X —
(myn(n) (m) (n)

z .7 7
(mn) — (m)  (n)
=7, =7 x1Z ifm,nareco-prime.
(iii) Let m, n be co-prime integers, then

o Z—>(—Z)><(£) is onto
m n

Consider (a + (m), b + (n)) € z, i, then 3 an integer x s.t.,
(m) (n)

o(x) = (a + (m), b+ (n))
Thus @+ (m), x + (n)) = (a + (m), b +(n))
x+(m)y=a+(m),x+(n)=>b+(n

x—ae (m), x—be(n)

b Uy

x —a = multiple of m, x — b =multiple of n
= x=a (mod m), x=b (mod n)

Proving what is popularly known as the Chinese Remainder theorem.

We now come to an important class of ideals which are not contained in any
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Maximal Ideals
Definition: Let R be aring. An ideal M # R of R is called a maximal ideal of
R if whenever 4 is an ideal of R s.t., M — A < R then either 4 =M or A =R.

Example 1: A field F has only two ideals F'and {0}. It is easy to see then that
{0} 1s the only maximal ideal of F.

Example 2: Let <E, +, . > be the ring of even integers.
Let H, = {4n | n an integer}
then H, is an ideal of Eand as 2 ¢ H,, H, # E.
Let A be any ideal of E, s.t., H,c A C E
Suppose H, # A. We show 4 = E.
Since H, c A, 3 somex € As.t.,x ¢ H,
By division algorithm, we can write
x=4g +r where 0 <r <4

Note » = 0 would mean x = 4qg € H,. Butx ¢ H, sor= 0. Again, r =1, 3
would imply x is odd which is not true. Hence the only value that » can have is 2.

Thus x=4g+2=2=x-4g€ 4
asx €ed,4ge Hyc A=>x—-4q€ A
2 € A = members of the type 2 +2,2+2+2,....,0—2are all in 4
=EcA. ButAcE
Hence 4 = E and H, is, therefore, a maximal ideal of E.
Example 3: {0} in the ring Z of integers is not a maximal ideal as {0} c H, CZ
where H, = {4n |n € Z}

Example 4: Let R° =ring of all real valued continuous functions on [0, 1], under
the operations

(f + gx=f(x) + gx)

(fe)x = f (x)g(x)
Let M= {fe R|f(%) =0}
then M is a maximal ideal of R“.
Let g be a function from [0, 1] to the real nos., defined by

g(x)=0 forall x € [0, 1]

then g is a real valued function and g (*2) =0, hence g € M. Thus M # ¢.
Again, iff, g € M be any two members, then

f(2)=g(2)=0

(-2 =f(C2)-g(2)=0-0=0=f-geM

Also for fe M, h eR°



(W)= h (o) f (V) = h(%). 0 = 0 = (fh)'"?
=>hf,fhe M
or that M is an ideal.
Define now, fa function from [0, 1] to the reals by
Ax) =1 for all x € [0, 1]
then @is a continuous function. Thus 6 € R“.
But @ ¢ Mas A2)=1=0
So M # R
Let / be any ideal of R s.t. M — I < R¢
thend A elst, LgM
ie., A2 =0
Let AM(2)=c#0
Define 3 from [0, 1] to reals such that
B(x)=cforallx € [0, 1]

then B eRr

Let y=A-

then vy =A%) -B(L)=c—c=0
=>yeM

>yelaaMcl
ie., B=A-wyel [A, v belong to /]
If y be the function from [0, 1] to reals s.t.,

Y@=~ (€#0)

then Y € R°

Now WBY(x) = #x) B(x) = L. ¢ =1 = Ax) for all x
=>vp=40

Since BelLyBel

we find O e [

But @is unity of the ring R,

thus /1is an ideal containing unity
= I=FK"

Hence M is maximal.
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Aliter: That M is maximal ideal can also be proved by using the Fundamental
theorem of homomorphism.

Define a function@: R — R, s.t.,
A f)=f(C~) forall fe R°
where R = set of real numbers
then @is a homomorphism as
Ar+g)=(+g (L) =f(2)+g()=AfN+ Ag)
Arg) = (19)(2) = [ (2) g(2) = &) Ag)

To check ontoness, we notice, if 7 € R be any element we can define another
map ¢ : [0, 1] > R, s.t.,

o(x) =rforall x € [0, 1]
then ¢ being constant function will be continuous.
Thus ¢ € R°
Also &) = ¢(*2) = r, showing that ¢ is pre-image of » under &
i.e., Ois onto.

Thus by Fundamental theorem of homomorphism

R _
Ker 6

Now feKerfd < Af)=0
& f(1)=0
& feM
= Ker =M

Hence f/[ = R, but R being a field, % will be a field.

i.e. M is maximal ideal of R (see theorem 3 below).

Problem 1: Let R be the ring of real valued continuous functions on [0, 1].
Let M= {f e R°|f()=0}. Let g € R be such that g(x) =x — 1 V x € [0,
1]. Then g is continuous and is in M. Show that M = <g>.

Solution: Letf €M be any member

Define: 4: [0, 1] > R s.t.,

S

h(x) = E when x # 1

= fix) when x = £



where R is the field of reals.

Thenfor x #

N|—

(ghyx = W) = g0 2 =

and for x=1

(gh)x = g(x)h(x) = 0 = fix)
and hence f=gh (Note & € R as fand g are continuous)
Thus Mc<g>cM=>M=<g>
Theorem 3: Let R be a commutative ring with unity. An ideal M of R is

maximal ideal of R iff % is a field.

Proof: Let M be maximal ideal of R. Since R is commutative ring with unity, %
is also a commutative ring with unity. Thus all that we need prove is that non zero

R C e e
elements of I have multiplicative inverse.

R
Letx+M e I be any non zero element

then X+M+M=>xe¢M
Let XR={xr|r € R}

It is easy to verify that xR is an ideal of R. Since sum of two ideals is an ideal,
M + xR will be an ideal of R.

Againas x=0+x.1 € M+ xR and x ¢ M we find
McM+xRcR
M maximal = M+xR=R
Thus leR=1eM+xR
= 1=m+xrforsomem e M,r € R
=>1+M= (m+xr)+ M
=m+M+@r+M=xr+M
= (x+M)(r+ M)

= (r+ M) is multiplicative inverse of x + M

Hence R 1s a field.
M

Conversely, let % be a field.
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Let / be any ideal of Rs.t., Mc I R
then 3 somea € I,s.t.,a ¢ M
Nowa ¢ M= a+M=#M= a+ Mis anon zero element of%, which

being a field, means a + M has multiplicative inverse. Let b + M be its inverse.
Then

(a@a+Mb+M)=1+M
= ab+M=1+M
= ab-1eM
= ab—1=m for some m e M
= 1 =ab—m € I (using def. of ideal)
= I= R (ideal containing unity, equals the ring)

Hence M is maximal ideal of R.

Remarks: (i) % being a field contains at least two elements and thus unity and

zero elements of % are differentie, 0+ M#1+Mi.e.,1 ¢ Morthat M #R.

(i7) In the converse part of the above theorem we do not require R to have unity
or it to be commutative, i.e., if Risaring and M is an ideal of R s.t., % isafield

then M is maximal.

Suppose /is anideal of Rs.t, McIc R. Thenda e I,st,aeg M

Nowa ¢ M= a+ M+ M= a—+ Misnon zero element of % and therefore

has multiplicative inverse, say, b + M. If ¢ + M be unity of % . (Note % can

have unity even if R doesn’t have unity. See exercises on page 394).

Now (a+M)b+M)=c+ M.
= ab+M=c+M

= c—abeMcl
Buta e = ab elandso (c—ab)+ab el
= cel

Let » € R be any element
Then rFr+M(c+M)y=r+M
= rc+M=r+M

= r—rceMcl



Sincece l,rcelandthus (r—rc) trcel=>rel=Rcl
Hence /= R and thus M is maximal ideal of R.

(#if) Again, the condition of commutativity is essential in the theorem is established
by the fact that we can have M, a maximal ideal in R where R/M is not a field and
R is anon commutative ring with unity. See next problem.

Cor.: A commutative ring R with unity is a field iff it has no proper (non trivial)
ideals.

If R is a field then it has no proper ideals

Conversely, if R has no proper ideals then {0} must be a maximal ideal. Thus

R is a field and as R =R, R is a field.
{0} {0}

Problem 2: Let R be the ring of n x n matrices over reals. Show that R has only
two ideals namely {0} and R. Hence show that {0} is maximal ideal of R.

Solution: Let.J be anon zero ideal of R. Let 4 be a non zero matrix inJ. Since
A # 0, it has some non zero entry. Suppose 4 = (al.j) and suppose a, # 0 in 4.

If El.j denotes the unit matrix in R whose (i, j)th entry is 1 and 0 elsewhere

then El.jEkFZOifj;tk
=E, ifj=k
Now A=a,E, +a,E,t..*a, E
Consider E _AE;=FE (a,E, +a,E,+.+a E )E.
=E(a,E)E;
=a,E E;

=a F. eJ asdeJ Vi

rs i
So (a5, E)a, E,)eJ
=>E, el Vi=1,2,3,.n
Thus identity matrix / in R can be writtenas /= E,, + E|, ... +E, € J.
So unity of R belongs to J or that /= R. Hence {0} and R are the only ideals of

R and so {0} is maximal ideal of R.

. R . R .
Note: Since R = o and R is not a field, we find o isnot a field even though
{0} is maximal. See remark above.
Definition:

Prime Ideal: An ideal P of aring R is called a prime ideal ifab € P=a € P
orb e P.

Example 5: {0} in the ring Z of integers is a prime ideal as ab € {0} = ab=
0=>a=0o0rb=0
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= a € {0} or b e {0}
It is an example of a prime ideal which is not maximal.

Example 6: H, = {4n | n € Z} we’ve seen is a maximal ideal in the ring E of
even integers.

H,, however, is not a prime ideal as 2.2 =4 € H,but2 ¢ H,.
In fact, H,, is neither a maximal nor a prime ideal in Z.
Example 7: Hp = {pn | n € Z} will be a prime ideal in Z for any prime p.
It will also be a maximal ideal in Z
Remark: In view of the above examples we observe that in the ring Z of integers
(i) every ideal in Z is generated by some n € Z.
(1) Anideal in Z is maximal iffit is generated by a prime.

(iii) One can show that in Z a prime ideal is either generated by a prime or is
the zero ideal. Consequently, a non zero ideal in Z is prime iff it is maximal.

Let P =<n > and suppose 7 is prime.
Letab € p=<n>,thenab=kn = n|ab
=nlaor n|b
=>aePor beP
or that P is prime ideal.
Conversely, let P =< n > be a prime ideal
Suppose 7 is not a prime and
n=ab, 1<a,b<n
Let A=<a> B=<b>thenPcAdand PC B
Now ab € Pand P is prime
= aePorbeP
= AcPorBcP
= either4A=PorB=P
ie, eitherb=1 or a=1 orthatn is aprime.
(iv) {0} is thus a prime ideal in Z but not maximal whereas every maximal ideal
is prime.
Theorem 4: Let R be a commutative ring. An ideal P of R is prime iff % is

an integral domain.
Proof: Let P be a prime ideal of R

Let (a+tP)b+P)=0+P
Then ab+P=P
= abeP



= aePorbelP
= a+P=Porb+P=P

thus % is integral domain.

Conversely, let % be an integral domain.

Let ab € Pthenab+P=P
= (a+P)b+P)=P
= a+P=Porb+P=P (R/P is an integral domain)
= aeP orbelP

Hence the result.

Theorem 5: Let R be a commutative ring. An ideal P of R is a prime ideal if
and only if for two ideals A, B of R, AB < P implies either A — P or B Z P.

Proof: Let P be a prime ideal of R and let AB — P for two ideal 4, B of R.
Suppose 4 ¢ P then 3 some elementa € 4 s.t., a ¢ P.
Since AB — P, we get in particular
aBc P
= abePforallbeB

Since P is prime, we get eithera € Por b € Pbuta ¢ P, hence b € P for
allb € B.

= BCcP
Conversely, we show P is prime. Let ab € P.

Let 4 and B be the ideals generated by @ and b then 4 = (a), B=(b). Ifx €
AB is any element then it is of the type

x=ab, +ab,+ ... +ab, a,€ A, b, e B
= (0,@) (B,B) + (040) (B,D) + oo + (c,0) (B )
fora, B, € R asa, € A= (a), b, e B=(b)
Thus x = (a,B,) (ab) + (a,B,) (ab) + ........ + (o, B,) (ab)
(R 1s commutative)
x = (B, + o, + ... +a B, )ab
Since ab € P, P is an ideal, all multiples of ab are in P. Thus x € P
ie, ABcCP
= AcPorBcP
= (a)c Por(b)c P

= a € Porb e P= Pis prime.
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Problem 3: Let R be a commutative ring with unity such that a*> = a Ya €
R. If I be any prime ideal of R, Find all the elements of R/I.

Solution: Since /is a prime ideal of R, R/I is an integral domain, and 1 + /is unity
of R/I.

Let r+ 1 € R/l be any member

then (r+I)* = * + I =r+ I (given condition)

= (+ DI+ D= (1 +D]=0+1
But R/ is an integral domain and therefore, eitherr +/=0+17 or (r + 1) =1
+1

or that R/I contains only two elements 0 +/and 1 + /.

Problem 4: Let R be a non zero commutative ring with unity. If every ideal
of R is prime show that R is a field and conversely.

Solution: To show that R is a field, we need show that every non zero element
of R has multiplicative inverse. We first show that R is an integral domain.
Let a,beRst,ab=0
Then ab € {0} which is an ideal of R and is, therefore, prime ideal
= a €{0}or b €{0}
ie., a=0 orb=0
thus R is an integral domain.
Let now a € R be any non zero element and let
@®R={a’r|r € R}
then ¢R is an ideal of R (Verify!) and is therefore prime ideal.
Now a.a=d*=d.1 € a’R
= a e aR
= a=a’b for some b € R
=a(l-ab)=0
=>1l-ab=0asa=#0
= b is multiplicative inverse of a.

Hence R is a field.

Converse follows easily as a field R has no ideals except {0} and R.
Problem 5: Let R be a commutative ring with unity. Show that every maximal
ideal of R is prime.

Solution: We know that an ideal M of R is maximal iff % is a field.

Thus if M is maximal, then % is a field and hence an integral domain.

= M is a prime ideal (theorem 4).



Problem 6: Let R be a commutative ring with unity and let M be a maximal
ideal of R such that M? = {0}. Show that if N is any maximal of R then N
=M.
Solution: Let m € M be any element
then m.m e M* = (0)
= m*=0 e N (Nis an ideal)
By previous problem, N will be prime
=>meN
=>McN
Thus McNcR
Since M is maximal, N=M or N=R
But Nis maximal in R, thus N# R
Hence N=M.
Problem 7: Show that in a Boolean ring R, every prime ideal P # R is maximal.
Solution: Let P be prime and / be any ideal s.t.,
PclIcR
then 3 some x € 7, s.t., x ¢ Pand as x € R, x> = x.
Let now, y € R be any element, then
X’y = xy
=>x(xy—y)=0€P (P is an ideal)
=xy—y € Pasx ¢ Pand P is prime
= xy—y=p for some p € P
Then yv=xy—-pel
asxel,ye R xyelandalsop € P,
Thus vel
= Rc /= I=R = Pis maximal.

Problem 8: Show by an example that we can have a finite commutative ring
in which every maximal ideal need not be prime.

Solution: Consider the ring R = {0, 2, 4, 6} under addition and multiplication
modulo 8.

Let M = {0, 4} then M is easily seen to be an ideal of R.

Againas2 ® 6 =4 € Mbut2,6 ¢ M, we find M is not a prime ideal. We
show M is maximal.

Let M < N < R, where N is an ideal of R.

Since < M, + > will be a subgroup of <N, + >, by Lagrange’s theorem
o(M) | o(N). Similarly, o(N) | o(R)=4

ie., 2 |o(N), o(N) | 4

ie., o(N)=2or4
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if o(N)y=2,then M=N as Mc N
if o(N)=4,then N=R as Nc R
Hence M is maximal ideal of R.

Remark: In case the finite commutative ring contains unity, then every prime
ideal is maximal.

Definition: An ideal I of a commutative ring R is called semi prime ideal if
a®> e = a e I, forall a € R clearly then every prime ideal is semi prime.

Example 8: Consider the ideal /= {6n | n € Z} in the ring of integers. Suppose
atel
Then a? is a multiple of 6
ie., 6|a’
Since 2|6, we find 2 | a®> = 2 | a (as 2 is prime)
Similarly 3 | a
=6|aasgcd(2,3)=1
=>ael

Hence / is semi prime, but /is not primeas2.3=6 € /[but2,3 ¢ I.

10.3 MORE QUOTIENT RINGS AND RELATED
PROBLEMS

Definition: Let R be aringand N be any ideal of R, then the system <R/N, +,.>
where R/ N = {r+N | r € R} and + &. are binary compositions on R/N defined by (»
+N)+(s+N)=@+s)+Nand(»+N). (s + N)=rs + Nforall7, seRr,isa
ring. This ring is called the quotient ring of R with respect to the ideal V.
NOTATION  We shall usually denote the elementx + N of R/N by x; thus 0
in this notation will mean A, the zero of R/N. One finds from definition that for any

X, yeR/N,X+¥=x+y and xy=xy.

Example 9: Let N ={6n|ne Z}.N. is anideal of Z. The elements of Z/N are the
cosetsNV, I + N,2 + N, 3 + N, 4 + Nand 5+ N which according to our notation

where both addition and multiplication are modulo 6. See the following tables.
Addition Table

0[1[2(3]4]5
0/0[1[2]3]4]5
1|1]2|3]4]5]0
2|2[3[4|5]0]1
3|3]4|5]|0]1]2
414|5/0]|1]2]3
5|/5(0(1]|2]3]4




Multiplication table

0[1[2(3]4]5
0/0]0[0]|0]0]0O
1]0]1[2]|3]4]5
2(0[2(4]|0]2]4
3/0[3(0]3]0]3
410[4(2]|0]4]2
510(5(4|3]2]1

Definition: (Prime ideal) Let R be a commutative ring. An ideal P of R is called
a Prime Ideal if Ya,be R,abe P=a<cP O pe P.

Example 10: In an integral domain D, (0) is a prime ideal. Since
a,be D, abe (0)= ab=0= a=0as D is integral deomain.

Example 11: In Z, the ideal (3) = {3n|n € Z} is prime, since ab € (3) = 3|ab = 3| a
or 3|b= ae(3). Infacteveryideal (p)={pn|neZ} where p is a prime number,
is a prime ideal of Z.

Theorem 5: An ideal P of commutative ring R is prime if and only if R/Pis an
integral domain.

Proof Let R/Pbe an integral domain, then forall a, b € R,

abe P=> ab=0=>ab=0 where a=a+P
=a=0orb=0,as R/P is an integral domain
=>aePorbeP.
Thus Pis a prime ideal.
Conversely let P be a prime ideal; then
ab=0=ab=0
=abep
=aePorbeP

=a=0o0rb=0
Also R/P is commutative as R is commutative.

Consequently R/P is a commutative ring without proper zero divisors. Hence
R/P is an integral domain.

Definition: (Maximal ideal)
Anideal M ofaring R is said to be a maximal ideal of R, if
(i) M =R,
(i) there exists no ideal J of R such that M <J <R.

More Ideals Rings

NOTES

Self-Instructional
Material

197



More Ideals Rings

198

NOTES

Self-Instructional
Material

Thus from (i) if M (# R) is amaximal ideal then for any ideal
Jof R, M c J < R holds only when either /= M orJ =R.

Example 12: In adivision ring D, (0) is a maximal ideal. Trivially (0) « Das 1 e D
as 1 e D and 1+ 0. LetJbe any non-zero ideal of D, then 3x (= 0)inJ. But Dis a
division ring so x~' e D; which gives 1 =xx! € J. Consequently.J = D. Hence (0)
1s amaximal ideal.
Example 13: In the ring £ of even integers, ideal (4) is maximal. As 2
€ (4), (4) = E. Further let J be an ideal of £ such that (4) <J. Then there exists an
element x e J such that x ¢ (4). In other workds x is an even integer not divisible
by 4. Consequently x=4n + 2 for some integer n. Now 2=4x—-4neJas
4ne(4)<J and x e J. Thus everyeven integral multiple of 2 is inJ. Hence E =
J. This proves the assertion.
Theorem 7: Anideal M of a commutative ring R with unity is a maximal ideal if
and only if R/M is a field.
Proof: Let M be amaximal ideal of R. Since R is commutative, /M is commutative.
Further 1 is the unity of R gives 7 is the unity of R/M. ps » R =1+ 0. Thusto
show that R/M is a field it is sufficient to prove that every non-zero element of R/
Misaunit. Let x(= 0) e R/Mthen x ¢ p. Consider xR = {xr |r € R}.xR is an ideal
of Randx =x1 € R. Sincexe M +xR, x¢ M, M <M + xR. The maximality of
M gives M + xR=R. Againl eR=M +xR ='3meM,rc Rsuchthat l =m +
xr. This implies that 1 + M=xr + M — 7 = = 7. Therefore, xis aunit. Hence
R/Mis afield.

Conversely as the unity of field is different from zero, T ¢ i.e. 1¢ M. Thus
M = R. Let Ibe anyideal of R such that M</. Choose 4 ¢ [ suchthat 4 ¢ pr. Then
a # 0,80 g isinvertible in R/M. Consequently 35 ¢ R = R/ M suchthat 5 =T,
this yields 1-apeM =1-abe1 as M < I. This in turn implies that
l=(1-ab)+abel as gpe] (Iisanidealand 4 e 7). Hence / =R.
Remark: If M is any maximal ideal of a commutative ring R with unity then R/Mis

afield and we also know that every field is an integral domain, we get M is a prime
ideal. Thus every maximal ideal in a commutative ring with unity is prime.

However the converse of this statement is not true.

Example 14: Consider the ideal (0) of Z, since Z is an integral domain, (0) is a
prime ideal of Z, but (0) is not maximal since (0) <(2) <Z.



Worked-Out Exercises

Exercise 1 Let R be the ring of all real-valued continuous functions on the

closed interval [0,1]. Let M = {f eR| f(%j = 0}. show that M is a maximal
ideal of R.

Solution The function w:[0, 1] > R given by w(x) =0~ x <[0,1] belongs to M.
Hence M is non-empty.

1 1 1
Let f; g eM. Then (f—g)(§j=f(§j—g[§j=03f—g€M. Further let

feM,heR then hf(%j = h[%jf@j =0=hf e M. Since R is commutative,

fh—hf e M. Hence M is an ideal of R.

Clearly M = Ras 9 e R givenby 8(x) =1 does not belong to M.
Let N be an ideal of R such that M < N. There exists 1< N. 1« M. This

1
means AG) #0. Put A(gj =c where ¢ 0.

Consider xeR given by u=1-4 where p(x)=cwxe[0,1]. Then

ﬂ(%j=/1ej—ﬁ(%j=c—c=0:> ueM = ueN. Therefore, f=A-peN.

1
Define ¥ € R by r(x)=z¥xe [O, 11

Thenwx [0, 1], 38(x)=y(x)B(x)=1=60(x) = yB =0  N. But ¢ is unity of R.
Hence N = R.

Consequently M is a maximal ideal of R.

Exercise 2 For any two ideals A and B of a ring R such that B c A, prove
that A/B and B are nilpotent (nil) imply A is nilpotent (nil) ideal.

A n
Solution Let Z and B be nilpotent. Then (gj =(B).

B™ = (0) for some integers, n, m>0. [gj =B) =>A"cB=>AN"
c B" = A™ =(0) = 4 isnilpotent ideal.

A . A4 . 4. .
Now suppose and Barenil. Let a e Athena+B € 3 Since 3 s nil, there

exists an integer n> 0 such that (¢ + B)" =B = 4" € B.
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Again as B is nil, there exists an interger m>0 such that (a")™=0 —, ,m —
This shows that a is nilpotent. Hence 4 is anil ideal of R.

Check Your Progress

1. When two ideals are called comaximal?
2. What s prime ideal?

3. What is maximal ideal?

10.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Twoideals 4and g are called comaximal if 4 + B = R.
2. Anideal Pofaring R is called a prime ideal ifab € P=a € Porb € P.

3. Let R be aring. An ideal M # R of R is called a maximal ideal of R if
whenever 4 is an ideal of R s.t., M — A — R then either A =M or A=R.

10.5 SUMMARY

e Twoideals 4and 5 are called comaximalif 4 + 5 = §.

e Let R be aring. An ideal M # R of R is called a maximal ideal of R if
whenever 4 is an ideal of R s.t., M — A < R then either A=Mor A=R.

e Anideal Pofaring Ris calledaprimeidealifab €e P=a € Porb € P.

e An ideal | of a commutative ring g is called semi prime ideal
ifa? €1 = a €l,foralla £ 7. Clearly then every prime ideal is semi
prime.

10.6 KEY WORDS

¢ Ideal: anideal is a special subset of a ring. Ideals generalize certain subsets
of the integers, such as the even numbers or the multiples of 3.

e Commutative ring: acommutative ring is aring in which the multiplication
operation is commutative.

e Maximal: a maximal element of a subset S of some partially ordered set
(poset) is an element of S that is not smaller than any other element in S.
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10.7 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions NOTES

1. Show that {0} in the ring of integers is not a maximal ideal.

2. Let g be acommutative ring with unity and let 1, and I, be two ideals of R.
Then show that /, and 7, are comaximal ideals of R iff ¢ is onto.

3. Show that intersection of two prime ideals may not be a prime ideal.

4. Show that an ideal is maximal iff it is generated by a prime.
Long Answer Questions

1. Show thata commutative ring is an integral domain iff {0} is a prime ideal.
2. Show that in a Boolean ring R, every prime ideal P # R is maximal.

3. Let 4 # Rbe anideal of R, then foranyx € R, x ¢ A, if A + (x) = R, show
that 4 is maximal ideal of R and conversely.

4. Find allideals of Z, , Z, . Which of these are maximal?

122 736"
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UNIT 11 THE FIELD OF QUOTIENTS
OF AN INTEGRAL DOMAIN
AND EUCLIDEAN RINGS

Structure

11.0 Introduction

11.1 Objectives

11.2 Field of Quotients of An Integral Domain
11.3 Euclidean Rings

11.4 Answers to Check Your Progress Questions
11.5 Summary

11.6 Key Words

11.7 Self Assessment Questions and Exercises
11.8 Further Readings

11.0 INTRODUCTION

You have studied about quotient rings in the previous unit and you will expand
your knowledge of the field of quotients of an integral domain in this unit. Further,
you will understand the concept of Euclidean rings. A Euclidean domain (also
called a Euclidean ring) is an integral domain that can be endowed with a Euclidean
function which allows a suitable generalization of the Euclidean division of the
integers.

11.1 OBJECTIVES

After going through this unit, you will be able to:
e Discuss the field of quotients of an integral domain

e Know about Euclidean rings

11.2 FIELD OF QUOTIENTS OF
AN INTEGRAL DOMAIN

Some types of rings are easier to study and their structures are better known than
those of the other types. If one can embed a certain ring R in aring S, such that the
structure of the latter is better known than that of former, then by using the properties
of S one can say a lot about the properties of R. The process of embedding of one
ring into another has been quite fruitfully used for the development of ring theory.



There are many procedures of embedding of one ring into another. Here in this
section we confine ourselves to only two methods: (I) Embedding of aringin a
ring with unity, (IT) Embedding of a domain in a field.

(I) Embedding of a ring in a ring with unity

Let R be aring, consider RxZ = {(r,n)|r € R,n € Z}.R x Z can be made into aring
by defining addition and multiplication as under:

Forall (r,n),(s,m)e RxZ,(r,n)+(s,m) = (r +s,n+m)
and (r, n)(s,m) = (rs + ns + mr, nm).
It can be checked that g x 7 1s aring with unity (0,1).
Theorem 1 Everyring can be embedded in a ring with unity.

Proof  Let R be aring, then as remarked above R =RxZ = {(r,n)|r e R,ne Z}
isaring. Wedefine /: R — R, by f(r) = (r,0)»r e R. Clearly fis a homomorphism.
fisalso I-1 as f(r)= f(s)= (r,0)=(s,0) > r=5s.

Hence R = f(R) c R,. Consequently R is embeddable in R, which has unity
namely (0,1).

Remark The embedding discussed in the above theorem is very nice in the
sense that f{R) is anideal of R,. To check this, note that for (r,0)

€ f(R),(s,n) € R, (r,0)(s,n) = (rs + 0s + nr,0n)
=(rs+nr,0)e f(R).

Similarly (s,n)(r,0) = (sr + nr,0) € R). Thus R, under identification of r with
(7 0), becomes an ideal of R .

(II) Embedding of a domain in a field.

Every subring of a field is an integral domain. Naturally one can ask that given an
integral domain, can we find a field which has that domain, as its subring? Or
formally speaking, can an integral domain be embedded in a field? The question is
of vital importance when one considers the solution of linear equation ax = b,q = 0, In
an integral domain D. Of course if a solution exists in D, it must be unique (Why?).
It is quite possible that no solution may exist in D. For example in Z, 3x—5 has no
solution. But in a field £, ax=b, q = 0 always has a solution namely @ '5. Thus if a
domain D can be embedded in a field F then an equation ax=5,a =0 with
coefficients in D will at least have a solution in 7/ Now we endeavour to construct
a field in which a given integral domain can be embedded. Our procedure is
motivated by the method of construction of rational numbers from integers.

Let D be an integral domain with at least two elements and let D, = D - {0}.

Consider Dx D, = {(a,b)|a,b e D,b#0}.
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Define arelation ‘~’ on D x D, as under:

Forall (a,b)(c,d) e Dx D,,(a,b) ~ (c,d)if and only if ad = bc.
Lemma 1. ‘~’ is an equivalence relation on DxD,.
Proof Let (a,b),(c,d).(e,f)eDxD,.

(i) Reflexivity: As ab = ba, putting d = b and ¢ = a in the definition of ‘~’
we see that (a, b)~(a,b).

(@) Symmetry: (a,b)~ (c,d) = ad = bc
=cb=da= (c,d)~(a,b).

(#ii) Transitivity: (a,b) ~ (c,d)and (c,d) ~ (e, f)

= ad =bcand ¢f =de,
= adf =bcf
= adf =bde as cf =de,

= af =beas d = 0and cancellation law
holdsin D,

= (a,b) ~ (e, f).
Hence ‘~’ is an equivalence relationon Dx D,.

Remark From the definition of equivalence relation one sees immediately that
for any non-zero elements a,b and ¢ of D, (0,a)~(0,b); (a,a)~(b,b) and (ac,
bc)~(a,b).

Let a/b be the equivalence class of (a,b). By properties of equivalence classes
it is evident that a/b=c/d if and only if ad=bc. Now if F is the family of all
equivalence classes a/b of D x D, we shall show that under suitably defined addition

and multiplication, F'becomes a field. Once again the addition and multiplication
of rational numbers will give us a clue. So we define for all

a/b,c/deF,alb+c/d=(ad+bc)/bd and (a/b)(c/d)=ac/bd. Note that as D is

an integral domain, »#0,d # 0= bd #0, so (ad + bc)/bd and ac/bd < F. In
order that our definitions should make sense we must show that they are
independent of the choice of representatives of equivalence classes involved in the
operations. In other words we must show thatif 4 /p = ¢'/p'and ¢/d = ¢'/4' then

(Ad +bc)/bd = (a'd'+b'c")/b'd" and ac/bd = a'¢'/b'd".
Lemma?2 The addition and multiplication as defined above are well-defined.
Proof Let g/b=a'/pand c/d=c'/d'
then ap'=a'p and ca'=c'd. (1)
Now (1) = ab'dd'= a'bdd' and bl cd'=bb'¢'d



= ab'dd'+bb'cd'= a'bdd'+bb'c' d The Field of Quotients of
an Integral Domain and
= (ad +be)b'd'= (a'd'+b'c")bd Euclidean Rings

ad +bc a'd'+b'c
- =
bd b'd'

. (Note.% stands for x/y)
Hence addition is well-defined.
Flnally(l) =ab'cd'=a'bc'd

= (ac)(b'd) = (ba)(d'c")
ac a'c

> —=—
bd b'd'
Consequently multiplication is also well-defined. Hence the lemma follows.
Theorem 2 <F,+,>1isa field and D can be embedded into F.
. 0
Proof From the remark following Lemma 1, it follows that for a # 0 D, " and

0 .
; : 7 and P %. So F has at least two elements. Further notice that for any two

non-zero elements a, bin D, 2 = %; alsoif ¢ # 0 then % _y
a C

(1) +1is Associative: For all eF

~ |

a ¢
b’d’
_ (ad +be) f + (bd)e
- (bd) f
_a(df)+(cf +de)b
- b(df)

_£+cf+de
b df

(2) +is commutative: For all %5 eF

a ¢ ad+bc bc+ad

bd db
C a
= — 4+ —.
d b
(3) Existence of zero element:
. 0 ) 0
Now for u#0 in D,— e F is such that -~ +— ==,
u b u bu b

Hence 2 is zero element of . Let us denote it by 0.
u
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(4) Existence of additive inverse:

Since 4424 |- bzba_ 0
b b 2 b’

0 0 a —a
vo_v Zil==1=0.
and iy ,we have ( b j

Thus - (%j = (_ba) eF.

(5) Associativity of multiplication:

(ﬁsj e _(Ej e (ac)e
bd\-f) \bd \ 1) (bd)f
_a(ce) _afce
S b(df) bld f)
(6) Commutativity of multiplication:

a ¢C a c ac ca C a
—,— F’——=—=—=——'
Forall 4. e b= =™ ab

(7) Existence of unity: Nowif 4 = 0 e Dthen ¥ ¢ Fis such that %% = % = %-
u

This gives that % 1s multiplicative identity i.e. unity for 7~ We shall denote

itby 1.
(8) Existence of multiplicative inverses of non-zero elements:

Now %¢0:>a¢0,b¢0:>£eF

a
ab ab u
222 2.
andba ab u
-1
Thus(ﬁj =2.
b a
et ac e
(9) Distributivity: For all b d T eF
afc e|_afd +de
b\d f) b\ df
_a(¢f +de)
b(df)



a cC a e ac ae
Also ——+——=—+—
bd bf bd bf

_ (ac)bf +(ae)bd
S (ddf
[(ac) f + (ae)d]b
(bdf)b
_a(cf +de)
b))

Hence multiplication is distributive over addition. Consequently <F +,.>isa

field.
Finally define f: D — F asunder:

Take a(#0) € D, then v.xe D put f(x)= );_a'

Let x,y e D, then f(x)=f(y):>);—a=ﬂ

=xa’=ya* > x=y.

Thus fis 1-1.
2
Also f(x+y)= (x +aJ’)a _ (x +a)2/)a =);_a+%
=f)+ ().
and /() Jﬁ—“”"j& == f(S W)

This proves that fis a monomorphism of D into 7. Hence D is embeddable in
afield £

Definition Let D be an integral domain with more than one element, than a field
of quotients of D is apair (F, o ) where F'is afield and ¢ is amonomorphism of

D into F'suchthatevery z € F is expressible as o(x)/o(y) forsome x,y € D with
y#0.

Remark When there is no confusion regarding the monomorphism o then
itself will be referred to as the field of quotients of D. Now as D = o(D) c F, we
shall normally identify D with its image o (D) and regard D iteself as a subring of £/
Inthat case each 4 e p isidentified with o(a) and hence, then each ; < F is ofthe
form x/y;x,y e D with y#0.

Theorem 3 Let D be an integral domain containing at least two elements
then D has a field of quotients. If (F,,0,) (F,,0,) and (F,,o,) are two fields of
quotients then there exists an isomorphism 7 of ', onto F, such that no, = o,.
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Proof In Theorem 2 we constructed a field F such that f:D — F with

f(x)=xal/a~xe D and a, anon-zero fixed element of D. Also we saw that fwas
a monomorphism. Now each ;¢ g is of the form x/y,x,ye D,y =0.Then
z=(xa/a)alya)= f(x)/ f(y). Hence (F f)is a field of quotients of D.

Let (F,0,) and (F,,o,) be two fields of quotients of D.

Define n: F, — F, asunder:

Take z € F,, then by definition z = % forsome x,ye D,y =0.
o1y

Uz(x)

Put
= oy

1 is well-defined since if z = 2% _ 9 forsome x, y,uv € D, with y %0
o(y) o1(v)

and v =0, we get o;(xv) = o, (uy)

=xv=uy as o, 18 1-1 = o,(xv) = o, (uy)

= 0,(x)0,(v) = 0, (u)o,(y) = o3(%) _ 0'2(“).
o,(y) o,(v)

Hence 7 is well-defined.

Now for Z:M, _ o)
o1(») o1(v)
z - o1(x)  o(u) _ oy (xv+ yu)
n(z+1) nLl (y)+0'1(v)} { i }

_ o) _ oy | oy
o 00) o)

=n(z)+n(t)
Also U(Zl)=77|:UI(X) O'](u):|= |:O'](xu):|= Uz(xu)
o1(») o1(v) o ()| o2(yv)

- 20 0 ),

o,(y) 0,(v)
This proves that 7 is a homomorphism. Now we show that 7 is onto. Let

z'e F,, then by definition z':wfor some x',y'e Dwith »'#0. Clearly
PAN

ZIE ') €F; is such that 77{ (¢ ;} = z'. This shows that 7 is onto.
1
ol(x)

o,x) (x) =
Finally  eKer #= ()= 0= 2 =5 =0 where =, )
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= o (1) =0= =2 g
al(y)

So that Ker » = (0) and # is 1-1 mapping. Hence 77 is an isomorphism of F,
onto F,.

As by definition of », forany x e D, 5[o,(x)]=0,(x) we get o, =o,. This
completes the proof.

Theorem 4 If afield K contains a non-zero integral domain D then K contains
a field of quotients of D.

Proof Let F= {% |a,beD,b# 0}. (Note that by %we mean »4p~'). Since D is

non-zero, 3 a(z0) e D. Then 1=%€F- Now  for any
a c ad —bc ac . .
=S y=",x-y= Fand xy=-—ecF. Thus F is a subring of K
T T T e S bd 8

. . b ab
containting 1. Now if x 0 then 4 =0 and x'= - F such that xx'= 2 1. Hence

x~' =x'e F. This proves that Fis a field.

Given z(»0) e Dwe can write z = za/a (under, identification, as remarked
earlier) and (za)/a € F. Thus we have D ¢ F. From the definition it is clear that '
is the field of quotients of D contained in K. This proves the theorem.

11.3 EUCLIDEAN RINGS

Definition: An integral domain R is called a Euclidean domain (or a Euclidean
ring) if for all a € R, a # 0 there is defined a non —ve integer d(a) s.t.,

(@) foralla,b e R, a#0,b#0,d(a)<dab)
(@) foralla,b e R,a#0,b#0,3tand rin R s.t.,
a=th+r
where either » = 0 or d(r) < d(b).

Example 1: Consider the integral domain <Z, +, . > of integers. For any 0 #
a € Z, define d(a) =| a |, then d(a) is non —ve integer.

Again, let a, b € Z be any elements s.t.,a =0, b#0

then dla)=|a|
dab)=|ab|=]a] |b]|
thus dla)<d(ab)as|a|<|al|b]

Againleta, b € Z (a,b+#0)
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Suppose b > 0, then it is possible to write
a=tb+r where 0 <r<b
t,rel
Ifr#0thenr<b = |r|<|b|
= d(r) < d(b)
Ifb<0then(—b)>0, .. It,r € Zs.t.,
a=(b)yt+r where0<r<-»
a=(=tHb+r
andif r#0, r<—-b = |r|<|b|
= d(r) < d(b)
Hence <Z, +, . >is a Euclidean domain.

Remarks: (i) When we say, in the definition, that 3 a non —ve integer d(a) for
any 0 # a, we mean, 3 a function d from R — {0} to Z" U {0} where Z is set
of +ve integers. This function d is called Euclidean valuation on R. Also the last
condition in the definition is called Euclidean algorithm.

(if) We can show that the # and » mentioned in the last (Euclidean algorithm)
condition in the definition of Euclidean domain are uniquely determined iff

d(a + b) < Max. {d(a), d(b)}.

Let d(a + b) < Max. {d(a), d(b)} and
Suppose a=th+r=tb+r,
Let ri—r=#0,thenb(t—t)=r —r#0,andsot—1¢ #0
Now d(b) < d(b(t - 1))
=d(r,—r)

<Max. {d(r,), d(-r)} (given condition)
= Max. {d(r)), d(-r)}
< d(b) which is not possible.
Thus r, —r=0 = b(t—-1)=0
or t—t=0ab=#0
= t=t and r=r,
Conversely, let t, r be uniquely determined and suppose
d(a + b) > Max. {d(a), d(b)} for some a, b (non zero) in R.
Nowb=0a+b)+b=1.(a+b)—a
Also d(— a) = d(a) < d(a + b)
and  d(b) <d(a+ D)




Thus forb,1 e R, 3t=0,r=bort,=1,r =—ast,b=tl+r,b=t-1
+r
1

where r# 7, (asa+b#0)t+1¢, acontradiction to the uniqueness.

Hence d(a + b) < Max. (d(a), d(b)). Note that a Euclidean domain contains
unity.
Theorem 5 Let R be a Euclidean domain and let A be an ideal of R, then 3
a, €Ast,A={ax|x e R}
Proof: If 4 = {0}, we can take a, = 0.

Suppose 4 # {0}, then 3 at least one 0 # a € A.

Leta, € A be such that d(a ) is minimal. [Existence is ensured by the well
ordering principle which states that every non empty subset of non —ve integers
has least element.]

We claim A is generated by this a .
Leta € A4, a # 0 then by definition, 3 ¢, » € R, s.t.,
a=a+r where either r = 0 or d(r) < d(a,)
Suppose r+0
Then a, e A, teR=>1ta, c 4
aedtae A >a—-ta, €A
=>red

But d(a,) is the smallest d-value in 4 and d(r) < d(a,), which leads to a
contradiction. Hence r=20

=a=la,
Thus any a € 4 can be put in the form 7a
> Ac {ax|xeR;}
But {ax|xe R} cA4 asa, € A= xa, € Aforallx e R
Hence A={ax|xeR}
which proves the theorem.

Definition: Such an ideal 4 which contains multiples of an element a , including
a, of R is called a Principal Ideal of R, generated by a,. We denote this by 4

= (a,).
In other words, the smallest ideal of R which contains a is called Principal
Ideal generated by a,.

In view of this definition the previous theorem will read as
Theorem 6: Every ideal in a Euclidean domain is a principal ideal.

Cor.: A Euclidean domain possesses unity.
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Proof: Let R be a Euclidean domain then R is its own ideal and, therefore, R is
generated by some element r of R.

Thus each element of R is a multiple of 7.

In particular r, is a multiple of

ie., r,=rk forsome k € R

Now if @ € R is any element then as R = (r)
a = xr, for some x

hence ak = (xr,) k = x(r k) = xr, = a

i.e., kis unity of R.

Definition: An integral domain R with unity is called a Principal Ideal Domain
(PID) if every ideal of R is a principal ideal.

In fact, if R happens to be a commutative ring with unity with above condition,
we call it a principal ideal ring.

In view of the previous theorem and cor., we get
Theorem 6: A Euclidean domain is a PID.

In particular thus, the ring <Z, +, - > of integers is a PID. This result follows
independently if we recall that every ideal in <Z, +, - > is a principal ideal.

Remarks: (i) A field F'is always a PID as it has only two ideals F'and {0}. F
is generated by 1 and {0} by 0.

(if) One can show that there exist PIDs which are not Euclidean domains. In
particular, Z[\/-19] = {a +/-19 b|a, be Z} where a, b are both odd or both
even, is a PID but not a Euclidean domain.

Problem 1: Show that in a PID every non-zero prime ideal is maximal.
Solution: Let P = (p), p # 0, be a non zero prime ideal in a PID R.
Suppose PcQO=(@cR
Then pePc0=(q
= p=gqr
= qreP
= qgePorreP

If ¢ € P then all multiplesofgareinP= Qc P

thus O=P
Ifre Pthen r=pt = r=qrt
= r(l—qt)=0

= 1l=¢qt (r+0)
Butge Q,teR=>qte Q=1 0=0=R



Note r =0 would meanp=¢q .0 =p=0= P =(0).

Problem 2: Find all the prime ideals of % , (n>1) and hence of Z.,.
n

Solution: We know any ideal of R/N is of the type % , where 4 is an ideal of

R, containing N.

Let (n)=Nandn= pl‘"1 p2°‘2....pro‘r, where p; are distinct primes.

Let % be any prime ideal of % ,then 4 is an ideal of Z.. We show it is a prime
ideal of Z. Since 4 is an ideal of Z, it is of the type 4 = (a). Suppose 4 is not a
prime ideal of Z. Then 3 x, y €Z, s.t., xy € 4 but x and y are not in 4.

Nowxye A = Nxy e AIN = NxNy € A/IN

= Nx or Ny € A/N as A/N is prime ideal
= x or yis in 4, a contradiction.

Hence A = (a) is a prime ideal and thus a is a prime. Also

(n) < (a). Since n € (n) < (a) we find a | n.

But primes dividing n are p,, p,, ....., p,

Thus a = p, for same i, 1 <i<r

Hence if 4/(n) is any prime ideal of (i then it is of the type (p:) for some

n) (n)

L1<i<r

i) , 1 <i<rwill be a prime ideal of Zz
(n) (n

Conversely, any ideal of the type

Zin) 7

as = .
(pi)/(n)  (p;)

Since (p,) is a prime ideal of Z, Z_isan integral domain.

i

2N s an integral domain and hence (1) are prime ideals of Z )
0 Q0 "
I<i<r.

where p, are all the primes dividing n.

Thus

(p) (p) (»r)
()" (m) 777 (n)

We thus conclude that if n= p/ p52.... p% then are

precisely the prime ideals of (%) .
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We’ve seen earlier that
V4
0 % - Zn s.t.,
Am+ (n)=m,0<m<n

1s an isomorphism.

Now if P is a prime ideal of (i) , then &P) is a prime ideal of Z .
n

Since ((Li)) are all the prime ideals of (i) , their images under 0 are the prime
n n

ideals of Z, i.e., (p,), (p,) ,-...., (p,) are all the prime ideals of Z .
Remarks: (i) In particular, prime ideal of Zp where p is prime is (p) =(0) as p
=0in z, Recall, a field has no non-trivial ideals and z, is an ideal when p is
prime.

(if) Since anon zero ideal in Z is maximal iff it is prime, the above result can
similarly be proved for maximal ideals.

Problem 3: Show that Z[i] = {a +ib | a, b € L}, the ring of Gaussian integers
is a Euclidean domain.

Solution: We know that Z[{] is an integral domain.
For any 0 # x € Z[i], where x = a + ib, define
d(x) = d(a + ib) = a® + b*
Then as x # 0, eithera=0or b #0

thus dia+ib)y=a*>+b*>0
Letnow x, y € Z[i],st,x#0,y#0and letx=a +ib, y=c +id.
Then d(xy)=d((a + ib) (c + id)) = d((ac — bd) + i(ad + bd))

= (ac — bd)* + (ad + bc)?
= @+ 1) (& + )

= d(x) d(y) (1)
Since y # 0, d(y) > 1 [y # 0 means c or d is non zero|
Thus d(xy) = d(x)

We now prove the last condition in the definition of a Euclidean domain.

Letx, y € Z[i] be two members where x is an ordinary +ve integer n (x =n
+i0)and y=a +ib

By Euclid’s division algorithm,
a=un+r, 0<r <n

b=vwn+r, 0<r,<n



. n n
Now either 5 SE or 1 >—

2
. n n
if i >— then - <—=
2 2

n n

> n—-np<n—— = —

2 2

Thus a=untr =untn—n+r,

=nu+1)—(n-r)

=ng +k, where k,=—(n—r))

n
[y | = n=n <2

Thus whether 1 Sg or §< i

WE can €Xpress

a=nq +k where |kl\sg

Similarlly, b = nq’ + k, where |k, |£§

ie., a+ib=n(q +iq") + (k, + ik,)

or y=tm+trt=q+tiq, r=k +ik)]
whereeither 7= 0 (k; & k, could be zero)

2

2
or d(r) = d(k, + ik)) = k +k; SHT"LHT‘ 2 = d(n)

Thus, under this particular case, the result is proved.

Letnow x, y € Z][i] be any two non zero members then xX is a +ve integer,

say, 1.

We apply the above result proved, to yx and » and find that

For yx andn, 3¢, r € Z][i], s.t.,

> =tn+r
where either » = 0 or d(r) < d(n)
Ifr=0then yx =tm=txx =>y=tx+0

If d(r) < d(n) then d( yx — tn) < d(xx)

= d(yx — 1xx) <d(x) d(x) [using (1)]
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= dXx) dy — tx) < d(x) d(x)
=dy—-tx)<dx) [dx) >0]
Put y—tx=r, thend(r) <d(x)
So y=itx+r, where d(r) < dx)
combining, we get
y = tx +r,, where either r, = 0 or d(r,) < d(x).
Hence the result is proved.

Problem 4: Show that Z[w] = {a + bw | a, b € Z} is a Euclidean domain,
—14+-/3i
2
Solution: Define d(a + bw)=a* —ab+ b*=|a+ bw |*.

and I +w +w? = 0.

where w =

bY | 3p
Now d(a + bw) = (a_EJ +T>0,whenevera+bw¢0.

LetO0#x,y € Z[w] and x =a + wb, y = c + wd. Then d(xy) = d(x) d(y).

_ a+bw: (a+bw)(c—dw)

Consider X 5 5
y c+dw c“—cd+d

=ut+w, u,veQ

Choose, 7, s eZsuchthat|r—u|S% and|s—v|£%
Then = = (r+sw)+t,wheret=(u—r)+(v—s)w.
Y
Now [ tP=@—-r?—W—7r)(v—s)+(v—s)
<

We can write

x=(r+sw)y+ty, where r + sw € Z[w].

and ty=x—(r+sw)y e Z[w]
Also dy) =y =ty =] dp)<dy)
Hence Z[w] is a Euclidean domain.

Theorem 8: Let a, b be two non zero elements of a Euclidean domain R. If
b is not a unit in R then d(a) < d(ab).

Proof: Let b be not a unit. Then fora, abin R 3t,r € R s.t.,
a=tab+r



where either r=0 or d(r) < d(ab)
If r=0,thena=tab = a(l —tb)=0
= tb =1 or that b is a unit, which is not so.
Thus 7 # 0 and d(r) < d(ab)
Now r =a—tab=a(l — tb)
Hence d(a) < d(a(1 — tb)) = d(r) < d(ab).

Cor.: If a, b are non zero elements of a Euclidean domain R then d(a) = d(ab)
iff b is a unit.

Ifbisaunitthen I cs.t., bc=1
Now d(a) < d(ab) < d((ab)c) = d(a)
= d(a) = d(ab)
Converse follows from above theorem.
Problem 5: Show that an element x in a Euclidean domain is a unit if and
only if d(x) = d(1).
Solution: Let d(x) =d(1)
Suppose x is not a unit, then by above theorem
d(1)<d( .x) Takinga=1,b=x
ie., d(1) < d(x)
a contradiction
.. X 1S a unit.

Conversely, let x be aunit in R, then 3y € R s.t.,

xy=1
Now d(x) <d(xy) (by definition)
= d(x) < d(1)
Also d(1) <d(1 . x)
= d(1) < d(x)
Hence d(x) =d(1).

Problem 6: Show by an example that it is possible to find two elements a,
b in a Euclidean domain such that d(a) = d(b) but a, b are not associates.

Solution: Consider D= {a +ib|a, b € Z} =Z]i], the ring of Gaussian integers

where d(a + ib) = a* + b*
then D is a Euclidean domain.
Here d2+i3)=13=d(2 - 3i)

but 2 + 3i and 2 — 37, are not associates.
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Notice that units of D are +1, +i and thus an associate of 2 + 3i can be
2+3)1, 2+ 3)(-1), (2 +30)i, (2 +30i)(-10)
ie., 2+3i,—-2-3i,2i—3,3-2i
which are all different from 2 — 3.

Theorem 9: Any two non zero elements a, b in a Euclidean domain R have
a g.c.d. d and it is possible to write.

d=M\a + ub for someh,n € R
Proof: Let 4 = {ra+sb|r,s € R}
then A4 is an ideal of R as
0=0.a+0.bed =>A#0
Let x,yeA
= x=ra+tsb, y=ra-+sb
Fis Ty S8y, € R
Thus x—y=(r,—rya+ (s, —s,)bed
Agan x € A,r e R,x=ra+sb
= rx=nrra+tsb)=(@r)a+(rs)bed
showing that 4 is an ideal of R.
Since a Euclidean domain is a PID, A will be generated by some element, say, d.
Weclaimd = g.c.d.(a, b)
Nowd € A = d=ha + pb for some A, u € R
Againsince a=1a+0.be 4
b=0.a+1.be4
(Note R being a Euclidean domain has unity)
Soaed A=(d) = a=oad forsomea € R
bed, A=(d)= b=pd forsomef € R
= d|aandd|b
Again,if c |aand c | b
then c|Aa, c|ub
= c|la+pub
ie. c|d = d=gcd.a,b).

Remarks: (i) The theorem clearly then holds in a PID, and the next result that
we prove in a PID holds in a Euclidean domain.

(i) Similarly one can show that any finite number of non-zero elements
a,,a, ..., a, inaEuclidean domain (PID) R have a g.c.d. which can be put in the
form Aa, +Aa, + ..+ A a,) €R.



Theorem 10: Any two non zero elements a, b in a PID R have a least common
multiple.

Proof: Let 4 = (a), B = (b) be the ideals generated by a and b.
Then A N B is an ideal of PID R. Suppose it is generated by /.
We show [=1.c.m.(a, b)

Now ANBcA,AnBcB
le()=1€ (a) == au for some u
le()=1e (b)=1= by for some v
= al|land b |!
Again, suppose a | x and b | x
=>x=aa, x=bp ao,P €R
= x € (a), x € (b)
=>xeAnB=()
=>x=k =1|x
Hence /=1l.c.m.(a, b).

Definition: In an integral domain R with unity, a, b (non zero) are said to be co-
prime or relatively prime, if g.c.d.(a, b) is a unit in R.

Problem 7: Two elements a, b in an integral domain with unity are co-prime
iff
g.cd.(a, b) = 1.
Solution: Let a, b be co-prime. By theorem 1 any associate ofa g.c.d.isag.c.d.
Since 1 is associate of any unit
1 will be an associate of d = g.c.d.(a, b) = a unit
= 1=g.c.d.(a, b)
Converse is obvious as 1 is a unit.
Prime and Irreducible Elements
Definitions: Let R be a commutative ring with unity. An element peR is called
a prime element if
(i) p#0, pis not a unit.
(@) Foranya, b € R, ifp|abthenp|aorp|b.

Let R be acommutative ring with unity. An element p € R is called an irreducible
element if

(@) p#0, pisnot aunit.

(i) whenever p = ab then one of a or b must be a unit. (In other words, p
has no proper factors.)
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Example 2: In the ring <Z, +, - > of integers, every prime number is a prime
element as well as irreducible element.

Example 3: Cosider the ring
ZIN-5] = {a+\=5b|a,be 2}

under the operations defined by
(a+~-5b) + (c+~=5d) = (a+¢)+ J=5(b+d)
(a+~-5b) . (c+~=5d) = (ac — 5bd) + J=5(ad + bc)
(i) We show /=5 is a prime element.

J=5 #0, it is also not a unit as, if it were a unit then 3 a + =55, s.t.,

J=5(a+~-3p) =1

= /-5 =1+5b, which is not possible as R.H.S. is an integer whereas L.H.S.

is not an integer.
Suppose now =5 divides (a +~/-5b)(c + N-5d),
then 3 (x +v=5y) s.t.,
V=50 +4/-5y) = (a +~/-5b) (c +~-5d)

which on comparison gives,
=5y =ac — 5bhd
5(bd —y)=ac = 5 |ac

But 5 being a prime number

either Slaor5|ec
If5|athen  (V=5)¥=5)| a
= J-5]a
= J-5|a+bJ-5

Similarly, if 5 | ¢ then v/=5 | ¢ + /=54

Hence /-5 is a prime element.

(if) We show further that 3 is an irreducible element which is not prime.
Suppose 3 = (a++-5b) (c+~-5d), a,b,c,d e Z

Taking conjugates, we get

3 = (a—/-5b)(c —/-5d)



Thus 33 = (a® + 5V + 5d°)
ie., 9 = (a* + 5b°)(c* + 5d°)
= a>+5p*=1,30r9

Now a® + 5b> = 3 is not possible as a, b € Z
Ifa*> +5p*=1thena=+1andbh=0
If a®> + 5b* =9 then a® + 5d*> =1, givingc =+ 1 and d = 0

Thus, if a® + 5b* = 1 then a ++/=5b =1 = unit
and if a® +5b*=9 then ¢ +v-54 =+ 1 = unit
Hence 3 is an irreducible element of Z[v-5].
Now (2++/-5)2-+/-5) =9 and thus
312 +V-5)2--5)
We show it does not divide any one of these. Suppose 3| (2 ++/=5) in Z[/-5]
Then 2++-=5) =3(a+-5b) a,beZ
= 2-+-5 = 3(a—/-5b)
= 9 =9 (a® + 5b%)
>l=a+5=a=+1,b=0
= 2+ -5 =3 which is not possible
Thus 3 + (2++/-5). Similarly 3 + (2-+/-5)
Hence 3 is not a prime element of 7[/=5].

Theorem 11: /n a PID an element is prime if and only if it is irreducible.

Proof: Let D be a PID and let p € D be a prime element. We need prove only
that if p = ab, then a or b 1s a unit.

Soletp=ab thenp |ab

= plaorp|b (pisprime)
If p|a then a = px for some x
So p =ab = (px)b

= p(l1 —xb)=0

= 1-xb=0 asp=#0

= xb=1 = bisaunit.

Similarly, if p | b then a will be a unit.
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Conversely, let p be irreducible element and suppose p | ab. We show either
plaorp|b.

If p | a, we have nothing to prove.

Suppose p+a

Since p, a are elements of a PID they have a g.c.d., say, d.

We show d is a unit.

Nowd|pandd|a

= Ju,vst,p=du,a=dv

If d is not a unit then as p is irreducible and p = du, u will be a unit

! exists

= u
= pul=d

a = pu'v = p | a which is not so.
Thus d is a unit.
Again, we know that d can be expressed as

d=\a+ pup
which gives dd' =d"\a + d 'up

= b.1 =Ad'ab+ pd'bp

But plab, p|pd! bp
p|(ab7ud“1+ud“lbp)
= plb

Hence the result follows.

Cor.: In an integral domain with unity, every prime element is irreducible. The
converse is not true.

Remark: Combining the results of Example 3 and the above theorem, we can
say Z[<-5] is not a PID.
Example 4: Consider the ring Z, = {0, 1, 2, 3, 4, 5} mod 6.
2is a prime element in Z but is not irreducible.
2 is, of course, non zero, non unit.
Suppose 2|a®b
Since ab=6g +a® b for some g
andas2|6q,2|a® b, we find2 |ab
= 2]a or2|b
= 2|a or 2|binZ

Hence 2 is a prime element.



Again, as 2 ® 4= 2, where neither 2 nor 4 is a unit, we find 2 is not irreducible. The Field of Quotients of
an Integral Domain and

(Note, Z is not an integral domain.) Euclidean Rings

Check Your Progress NOTES

1. Write two procedures of embedding one ring into another.
2. Give an example of a Euclidean ring.
3. Whatis a Principal ideal?

4. What s a Principal Ideal domain?

11.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. (1) Embedding of aring in aring with unity. (i1)) Embedding of a domain in
afield.
2. <Z,+, > Integral domain of integers is a Euclidean ring.

3. Anideal 4 which contains multiples of an element a,), including a,, of R is
called a Principal Ideal of R, generated by a,. We denote this by

A=(ay).
4. Anintegral domain R with unity is called a Principal Ideal Domain (PID) if
everyideal of R is a principal ideal.

11.5 SUMMARY

¢ Everyring can be embedded in a ring with a unity.

e Let D be an integral domain with more than one element, than a field of
quotients of D is a pair (F, ) where F'is a field and ¢ is a monomorphism
of D into F'such that every z € F'is expressible as o(x)/c(y) for some x, y
e Dwithy#0.

¢ Anintegral domain R is called a Euclidean domain (or a Euclidean ring) if
forall a € R, a# 0 there is defined a non —ve integer d(a) s.t.,

(i foralla,beR,a#0,b#0,d(a)<d(ab)
(@) foralla,beR,a#0,b#0,3tandrin R s.t., a =tb+r where either
r=0ord(r) <d(b).

e Let R be a Euclidean domain and let 4 be anideal of R, then 3 a, € As.t.,
A= {ayx|x € R}. Anideal 4 which contains multiples of an element a,,

including a,, of R is called a Principal Ideal of R, generated by a,,. We
denote this by 4 = (a,).
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¢ Anintegral domain R with unity is called a Principal Ideal Domain (PID) if
every ideal of R is a principal ideal.

¢ Inan integral domain R with unity, a, b (non zero) are said to be co-prime
or relatively prime, if g.c.d.(a, b) isaunit in R.

11.6 KEY WORDS

¢ Embedding: an embedding is one instance of some mathematical structure
contained within another instance, such as a group that is a subgroup.

¢ Domain: domain of a function is the set of “input” or argument values for
which the function is defined. That is, the function provides an “output’ or
value for each member of the domain.

¢ Field: a field is an algebraic structure with notions of addition, subtraction,
multiplication, and division, satisfying certain axioms. The most commonly
used fields are the field of real numbers, the field of complex numbers, and
the field of rational numbers.

11.7 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. Show that every field is a Euclidean ring.

2. Write a short note on Principal ideal Domain.

3. Prove that any two non-zero elements g, hina PID g have a least common
multiple.

4. Find all units of Z[/=3]
Long Answer Questions

1. IfR = {a + 14/3 |a b € Z}. Show that R is an integral domain with unity.
Obtain its field of quotients.

2. Determine the fields of quotients of the integral domain of complex numbers
a + biwherea, b € Z.

3. Give an example to show that non-isomorphic integral domain may have
isomorphic fields of quotients.

4. Show that Z[+/3] = {a + +/3B|a, b € Z}isaEuclideanRing.



11.8 FURTHER READINGS

Hungerford, Thomas W. 2003. Algebra. Berlin: Springer Science & Business
Media.

Khanna, VK, S.K Bhamri. 4 Course in Abstract Algebra. NOIDA: Vikas
Publishing House.

Singh, Surjeet, Qazi Zameeruddin. 2005. Modern Algebra. NOIDA: Vikas
Publishing House.
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BLOCK -1V
EUCLIDEAN RING AND POLYNOMIAL RING

UNIT 12 A PARTICULAR
EUCLIDEAN RING

Structure

12.0 Introduction

12.1 Objectives

12.2 A particular Euclidean Ring

12.3 Polynomial Rings

12.4 Answers to Check Your Progress Questions
12.5 Summary

12.6 Key Words

12.7 Self Assessment Questions and Exercises
12.8 Further Readings

12.0 INTRODUCTION

In this unit, you will know about a particular case of Euclidean domain. A Euclidean
domain is an integral domain that can be endowed with a Euclidean function which
allows a suitable generalization of the Euclidean division of the integers. The concept
of polynomial rings is also discussed in this unit. A polynomial ring or polynomial
algebra is aring formed from the set of polynomials in one or more indeterminate
with coefficients in another ring, often a field.

12.1 OBJECTIVES

After going through this unit, you will be able to:
e Know about a particular case of Euclidean ring

¢ Understand the concept of polynomial rings

12.2 A PARTICULAR EUCLIDEAN RING

Let J[i] = {a+ b | a,b € Z}. We call these the Gaussian integers. Our first
objective is to exhibit J[i] as a Euclidean ring. In order to do this we must first
introduce a function d(x) defined for every nonzero element in J[i] which satisfies

1. d(x) is anonnegative integer for every x # 0 € J[i].



2. d(x) <d(xy) for every y # 0 in J[i].

3. Given, a, B € J[i] there exist g, r € J[i] such that o = a3 + » where
r=0ord(r) <d@p).
Put  d(a+bi) = |a+ bi| = Va?+ b2

Condition (1) is obvious. Condition (2) is also easy, since
d(af) = |af| = |e||3| = |a|d(5)

which is <d(P), since |o| = /a2 + 2 > 1, for a, b are integer numbers and
o =0.
Condition (3) is more complicated. So let @ =a + bi and B = ¢ + di
#0. Thenin Q[i] = {z + yi | 2,y € Q} we get
o a+bt ac—bd ad+be.

- = = — — + — —i =1+ yi.
B c+di 2+d? c2+d? /

This is the exact quotient in [;], but what is the best we can do in Z[i]?
The nearest we can get is the number k =m + ni, where m is the integer nearest x,
and » the integer nearest y.

Note that

B =

and |y—n|<

B =

|r —m| <
Now

% =z+ypi=m+ni+(z—m)+ (y—nk
and multiplying by 3 we get
a=(m+ni)i+[(x —m)+ (y — n)iB.
Put as quotient ¢ = m + ni € J[i|. As reminder we then would have
r=[(z—m)+(y—n)lf=a—q8e i
We now compute
dr) = d([(x —m) + (y — n)il3)
— [z —m) + (y—n)il3|

= |[(x — m) + (y — n)i]|| 8]

i

=y~ mfF+ly~nflf £ 5

18| < d(B)

and see that condition (3) is satisfied.
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LEMMA 1: Let p be a prime integer and suppose that for some integer c relatively
prime to p we can find integers x and y such that x* + y? = ¢p. Then p can be
written as the sum of squares of two integers, that is, there exist integers @ and b
such that p = a*> + b°.

Proof: The ring of integers is a subring of J[7]. Suppose that the integer p is also a
prime element of J[7]. Since

cp =z 4 y* = (z + yi)(z — yi),

we have

pl(x+yi) or p|(r—yi) in Ji.

Butif p | (x + yi) then x + yi = p(u + vi) which would say that x = pu and
y=pv so that p also would divide x — yi. But then

Pz | (z+yi)(x—yi) =cp

from which we would conclude that p | ¢ contrary to assumption. Similarly
if p | (x—yi). Thus p is not a prime element in J[]. In consequence of this,
p=(a+bi)(g+di) (1)
where a + bi and g + di are in J[i] and where neither a + binorg+diisa
unit in J[7]. But this means that neither &> + b*= 1 nor g + &> = 1. From (1) it
follows that
p=(a+bi)(g+ de)
Thus
p? = (a+bi)(g+di)(a—bi)(g— di) = (a* + 1*)(g* + &°).

Therefore (a* + b%) | p> so a®> + b* =1, p or p. But &> + b*> # = 1 since
a+ biis notaunitinJ[i]; &> + b* #=p?, otherwise g* + & = 1, contrary to the fact
that g + di is not a unit in J[Z]. Thus the only feasibility left is that a*> + b* =p.
LEMMA 2: If p is a prime number of the form 47 + 1, then we can solve the
congruence x> —1 mod p.

Proof: Let

2
Since p — 1 =4n, in this product there are an even number of terms, therefore

o | 1
e (i) (=2) e8] e (_PT) .

But p — k=—kmod p, so that

2 _ ; p—1 " ) p—1
1 :(1-2-3... 5 )(—1}-(—2)-(—3)...(— 5 )

. p—1 p+1 e
1 208 1 55 .(p=1)

=(p—-1)=-1 modp

by Wilson’s theorem.



Theorem 1 (Fermat): If p is a prime number of the form 4n + 1, then p = &> + b*
for some integers a, b.

Proof: By Lemma 2 there exists an x such that x> =—1 mod p. The x can be
chosen so that 0 <x < p — 1 since we only need to use the remainder of x on
division by p. We can restrict the size of x even further, namely to satisfy [x| < p/2.
For ifx > p/2, then y = p < x satisfies )* <1 mod p but |y| < p/2. Thus we may
assume that we have an integer x such that [x| < p/2 and x* + 1 is a multiple of p,
say cp.

Now

cp=r*+1<p?/4+1<p?

hence ¢ <p and so p y ¢. From this by Lemma 1 it follows that p = a*+ b*
for some integers

12.3 POLYNOMIAL RINGS

Consider any ring S and a subring R of S. Let u € S be such that ru = ur for every
r e R . Let R[u] denote the set of all elements of S of the form

2 n
ag+au+au” +a,u”,

where g, € R foreveryi=0, 1,2, ....., n and n is any positive interger. Using the

fact that au* = u/a forevery 4 e R and every positive integer k, one can immediately
see that R[u] is non empty and closed under subtraction and multiplication. That
is, R[u] is a subring of S. Further if

ag+au+au’ +..+au" =0
for a; € R(i=0,1,2,....,n) such that at least one of a, is non-zero then we say that u
is algebraic over R. However if for every choice of q, a|, a,,...,a, (of elements
inR)a,+au+au"+..+au" 0 whenever at least one of a; # 0 (i>0) then
u is said to be transcendental over R. For example let us consider R and Q. Now
J2 e R, by using the fact that (12)? =2 e Q, we can see that each member of
Q[v/2] isofthe type a+b+y/2, a,b e Q . Furtheras 2-1(1/2)? =0, we see that /3 is
algebraic over Q. Consider  , we know that 7 is not an algebraic number i.e. it

is not the root of any polynomial equation with coefficients as rational numbers.
Thus 7 is transcendental over Q.

Given any member

ag+aw+ azﬂz +ta, " €Q[r]

we get an infinite sequence (ay,a,, a,,....,....,.q,, 0, 0,....,...) of elements of Q in
which all terms after nth stage are equal to zero. Conversely given any infinite
sequence
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(BysDyseveosenshy 0,0, .0..)

of elements of Q in which all except finite number of terms are zero we can find a
non-negative integer m such that 5, =0 »i > m+1. this sequence determines an
element

by +bw+by? +....+b, 7" € Q[x].

m

Further notice that any two elements
co+em+e,mt +.and dy +dyw+dymt +..

with, ¢;,d; € Q ,are equal ifany only if ¢, = d, i, since otherwise we shall get

1271
to be algebraic over Q. Thus each member a, +a,7 +a,z* +...+a,z" is uniquely

determined by the corresponding infinite sequence (a,, 4;, a,,..0,0....,...) of elements
of Q. Again we turn to the general case of R and S. In that case if e is

transcendental over R then each member 4, + aju+...+a,u", a; € R 1s uniquely

determined by the infinite sequence (a, a,,a,, .........,a,, 0,0, ....,....) of elements
of R.

Let us take a look on the problem from different angle. Suppose R is aring.
For the sake of convenience let us suppose that R has unity 1(= 0) . The problem
is ‘does there exist a ring S containing R such tat S contains an element x which
commutes with every element of R and x is transcendental over R?’ It is this
problem we take up firstly in this section and give its answer in affirmative. We
take clue from our earlier observation that if x is transcendentl over R then any
member a, + a,x + a,x, +...+a,x, determines uniquely and is determined
uniquely by the infinite sequence (a, a,, ay,...,..., a,, 0, 0.....,...) of elements of R.
As we do not know for the time being, what this x will be—we prefer to define a
polynomial over R as follows:

Definition: Any infinite sequence (a, @, a,,...,....,Q,,......) Of elements of a

n’

ring R is said to a polynomial over R if all except finite number of its terms a, are
equal to zero.

aring R is said to a polynomial over R is said to be a polynomial over R if there
exists anon-negative integern such that @, =0~i>n+1.

Each member g, of the polynomial (@, a,, a,.....,.....) is called its jth coefficient.
Further a,, is called the constant term and if 72 is the largert non-negative integer
with a, # 0 thena, is called the leading coefficient of the polynomial.

Definition: (Sum and product of two polynomials).

Let /= (a,, a,, a,,...,...) and g = (b, b|, b,,...,...) be any two polynomials
over aring R then their sum f+ g and product fg are defined as under:



f+g=(a,+b,, a,+b,a,+b,, ...,...
fg=(c,+¢,, ¢y,...,...) Wherec, =ayb,.
¢ =ag +ab,, c,=ab,+ab +ab, andso on,in general
c,=ab, +ab,_ +..+...+..+ab,
= z ab, foreveryk=0.

i+j=k

It remains to settle whether sum and product of two polynomials over R are
polynomials over R or not. This is answered by the following more comprehensive
theorem.

Theorem 2: The set T of all polynomials over aring R is a ring under the addition
and multiplication operation defined as follows:

Forall f = (ay,a,,a,,...,...),g =(by,b;,b,,...,..) €T
f+g=(ay+by, a,+b,,a,+b,,...,...)

and fg = (Cy,C1,Cpsensesn)

where ¢, = > a;b; forevery k <0.
i+j=k

Proof: Leta, and b, be coefficients of fand g respectively such that a; = 0xi > n+1
and b; =0~ j>m+1. If s = max (m, n) then a, =b, =0xs, S0 a,+b, =0vt>s,
hence f+geT.

Again consider k> m + n, then if i +j = k either i > m or j > n hence al.bj =
0 for all i and j satisfying i +j = k for k> m + n. This gives that ck = 0 for all
k>m+n,hence fgeT.

Now as R is aring it can be easily verified that < 7, +> is an Abelian group in
which (0, 0,0, ....,...) is the additive identity and for any /= (@, a,, @,...,...) e T
f'=(-ay,—a,,~a,,.......) is the additive inverse of /. Clearly f’e T . Finally item be
easily checked that is distributive on left as well as on right over +. Hence <7,
+,.>1saring.

Theorem 3: Let T be a ring of polynomials over a ring R then
R'={(a,0,0,...,)| a € R} is asubring of T isomorphic to R under the mapping (a, 0,
0....,) —» a. Further if R has unity [ then (1, 0, 0,...,...) is the unity of 7.

Proof: Let /: R —» T be defined by fla) = (a, 0, 0,....,...) »a e R. Then for all
a,beRr, f(a+b)=(a+b,0,0.,....)=(a,0,0,....)+(,0,0,...)=f(a) +

f(b)and f(ab) = (ab, 0,0,...,...) = (a,0,0,.....)(D, 0,0....,...) = £(a) £ (b). Also
fis 1—1since f(a)= f(a)= (a,0,0,......) = (b,0,0,.....) =>a=h.
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Hence R = f(R)=R'. This proves first part of the theorem.

Finally if R has unity 1 then (1) = (1, 0, 0....,...)e 7 and for all (a,, a,,
Agperese)eT 5 (A, Gy, Ase.s.) (1,0, 0,00, = (a4, 4y, ay,...,...) = (1,0, 0,...,...)
(a,,a,,a, ....,...). Hence (1, 0, 0, .......) is the unity of 7.

Remark: For each a € R, let 7 denote the polynomial (a, 0, 0,...,...). Further
let R have unity 1 (= 0) .

Definex=(0, 1, 0, 0,...,...) then zx=(a, 0, 0,...,...)(0, 1, 0, 0,...,...) = (0, a,
0,0,..,..)=(0,1,0,0.,....)(a,0,0, ...,...) = x a and so x commutes with
every element of g i.e. with every element of R if we identify each a with 7 .

By applying the formula for multiplication of the polynomials one find that
¥=0,1,00, ... x=(0, 0, 0, 1, 0, 0,....,.... ), and so on, in general
X"=(0, 0, 0,ciyereecs0, 1, Oyieeyne. ywith 1 at (n+1) the place. Further for any
aeR, a x"=(0,0,0,...,..a4a,0,....,....). with a at (n+1) the place.

Letf=(a,, a,, a,, ...,...) be any polynomial over R. As there exists a non-
negative integer n such that ¢, =0wi > n+1 we see that=(a, a,, a,, ....,....,a,, 0,

0y vvorern) = (g 0, 0oy ) + (0, @, 0, 0,enenyin) +(0,0, @ty 0,enyen) o+

(n+T1)th place
[ —)
et t(0,0,..,0,a,,0,.......) @ +a&x +...... +ax".

Further /=0 ifand only if o, =0xi gives @, + @ x+a@,x" +....+ ax" =0 if
and onlyifeacha,=0.As R = R’ under the mapping ¢ — g we identify R with

R' and each a € R with the ploynomial @. Then we get that R is a subring of 7.
Now x e T issuch that ax =xav € R. Every member of 7'is of the form

2
f=ay+ax+ax” +..+..+a,x"

and /= 0 only when each a,= 0. Consequently x is transcendental over Rand T’
= R[x]. Thus we have found aring 7 containing R such that 7'is a ring of polynomials
in an element x over R and x is transcendental over R. We show that such ring 7'is
unique to within isomorphism. For this we have.

Theorem 4: Let R be any, Sand s’ two overrings of R. Suppose that there exist
ueS,u' €S such that u and »' commute with every element of R. Then

R[u] = R[u"] under the mapping " R[u] — R[u'] defined by fa,+a,u+au*+..)
= ay+au'+a,(w')* +... whenever uand »' are transcendental over R.
Proof: Firstly we show that fis well-defined.

ag+au+ayu® +.....=by +bu+byu’ +...

then (ay —by)+(a, —b))u+(ay —by)u* +..=0



— — _ 3 A Particular
= a,=by, a =b,a, =b,,.... asuis transcendental over R. Euclidean Ring

This in turn implies a,+au’+a,W*)+....=b,+bu’+b,w"*)+... hence
flay+au’ +ay’ +...)= f(by+bu+bu’ +....).

Consequently /is well-defined.

Now let a, +ayu+ayu® +....,by + b +byu* +... € R[u]

Then f[(ay +ayu+ayu® +..)+(by + byu+byu* +....)]

= fl(a, +b,) +(a, +b)u+(a,+bu+bu’ +....)]
=(a,+b,)+(a, +b)u’ +(a,+b)u')+....]
=[a, +au’ +a,W’) +..]+[b, +bu’ +b,(u’)’ +...]

= f(a, +au+au’ +..)(b, +bu+bu’ +....]

Further f[(aq +a,u+au® +...)(by + b +byu* +..)]

= fla,b, + (a,b, + aby)u+ (a,b, + ab, + a,b))u’ +...]
= a,b, + (ab, + aby)u’ +(a,b, +ab, +ab,) (')
=[a, +au’ +a,(u’)’ +...1[b, + by’ +b,(u’)* +....]

= f(ay+au+au’+..)f (b, +bu+bu’ +...)

Thus fis a homomorphism.

Again f(a,+au+au’+..)= f(by+bu+bu’ +...)

= a,+a') +a,u’)+...=by+bu’+b,u') +

= (a,=b))+(a, —b’' +(a,~b,) W) +...=0

= a,=by, a,=b, a,=b,..., asu’istranscendental over R.
= ay+au+au’ +...=by+bu+bu’ +...

This gives fis 1 —1.

Finally each elements of R[u'] is of the type a, + au’ +a, (u)* +... Witha, a,,
ay, ... ¢ R, which is clearly equal to fla, + a,u + a,u®+ ...).

Hence f1is onto.

Consequently R[u]= R[u'].

Let us return to R and 7' mentioned earlier. We call x=(0, 1, 0, 0,...,...) an
indeterminate over R. Now if R has no unity then R can be embedded in aring S

with unity 1(=0). Then T < S[x] with x = (0, 1, 0, 0,...,...)e S[x] but xgT.

However each member of T'is still of the form a, + ax + a,x* + .. +a x", a; € R .

Still we denote T'by R[x]. In this case it must be emphasized that x ¢ R[x].
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Check Your Progress

1. Give an example of a Euclidean ring.

2. What is the definition of a polynomial over a ring?

12.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Jlil={a+bilab €Z}.

2. Any infinite sequence (ag, @y, @7, ... @y, Qpsq - ) Of €lements of aring R is
said to be a polynomial over R ifall except finite number of its terms a ; are
equal to zero.

12.5 SUMMARY

e Gaussianintegers J[i] = {a + bi | a,b £ Z}isaFEuclideanring.
e [f pis a prime number of the form 4n + 1, then p = a®+ b? for some
integers a, b.

o Letf(x)=a,t+ajx+ a2x2 +...+a;x™ be any non-zero polynomial in
R[x]. We say f(x) has degree m if a;;; # 0 and a; = 0 for all i > m, and
write deg f (x) = m.

12.6 KEY WORDS

¢ Polynomial: an expression of more than two algebraic terms, especially
the sum of several terms that contain different powers of the same variable(s).

e Degree: The degree of a polynomial is the highest degree of its monomials
with non-zero coefficients.

e Zero polynomial: The zero polynomial is the additive identity of the additive
group of polynomials. The degree of the zero polynomial is undefined.

12.7 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. If R and S be two isomorphic rings. Show that R[x] and S[x] are also
isomorphic.



2. Show that R is an integral domain iff R[X] is an integral domain, where R[X]
is the ring of polynomial of a ring R.

Long Answer Questions

1. State and prove Fermat’s theorem.

2. Show that set of all polynomials with even co-efficients is a prime ideal in
Z/x].

3. Let R be a ring. Verify that the set S of all those polynomials in R[x] which
have constant term zero, form a subring of R[x].

12.8 FURTHER READINGS

Hungerford, Thomas W. 2003. A/gebra. Berlin: Springer Science & Business
Media.

Khanna, VK, S.K Bhamri. 4 Course in Abstract Algebra. NOIDA: Vikas
Publishing House.

Singh, Surjeet, Qazi Zameeruddin. 2005. Modern Algebra. NOIDA: Vikas
Publishing House.
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UNIT 13 POLYNOMIALS OVER
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13.6 Summary

13.7 Key Words

13.8 Self Assessment Questions and Exercises
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13.0 INTRODUCTION

In this unit, you will know about polynomials over the rational field. In abstract
algebra, the field of rationals of an integral domain is the smallest field in which it
can be embedded. This unit also introduces you to the Unique Factorization
Method, which is a very important concept in ring theory.

13.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Discuss polynomials over the rational field
¢ Know about Unique Factorization Method

e Solve related problems

13.2 POLYNOMIALS OVER THE RATIONAL FIELD

A rational field consists of the fractions a/b, where a and b are integers and b # 0.
The additive inverse of such a fraction is equal to “‘a/b and the multiplicative inverse,
provided that a # 0 is equal to b/a. The field axioms such as the laws of distributivity,
commutativity and associativity reduce to standard properties of rational numbers.

Equations of the forma x"+a  x"'+...... +ax+a,=0,wheremis

apositive integer and the a’s are elements of the rational field are called polynomial
equations in x.



Let F'be arational field. Ifa ,a
the form,

1> --e» @, a e F, then any expression of

ax"+a x"'+....+tax+ta
m m—1 1 0

is called a polynomial over F in the indeterminate x with coefficientsa ,a_ |,
., a,. The set of all polynomials with coefficients in /'is denoted by F[x]. If nis
the largest nonnegative integer such thata = 0, then we say that the polynomial,

) =ax"+ ... +a,

has degree n, written as deg(f(x)) =n and a is called the leading coefficient of

fx).

13.3 UNIQUE FACTORIZATION DOMAINS

Definition: Let R be an integral domain with unity then R is called a unique
factorization domain (UFD) if

(i) every non-zero, non-unit element a of R can be expressed as a product of
finite number of irreducible elements of R and

(@) if a =p,p, ..... p,,
a=q,q, ... q,
where p, and q;are irreducible in R then m = n and each p, is an associate of some
q;
(It would, of course, be possible to write ¢ s in such a manner that each p,
will be an associate of g..)

For example, the ring < Z, +, - > of integers is a UFD. We know it is an integral
domain with unity. If n € Z be any non-zero, non-unit element (i.e., n # 0, =1)
of Z then if n > 0, we can write

n= p“ p,"2 ... pn"" where p, are primes

= n=(pp .- DPy) (DyDy v D) oo @p, D)
or that n is a product of prime (and thus irreducible) elements of Z.. Again
this representation of » is unique (by fundamental theorem of arithmetic).

In case n <0, let n = (— m) where m > 0 then we can express m as product
of primes (therefore, irreducibles) in Z

say, m=q,q, ... q,
then  (-m)=n=(=q)) (g,) .- (q)
Afield < F, +, - >is always a UFD as it contains no non-zero, non-unit elements.
Z[\-5] isan integral domain which is not a UFD.

46 € Z[J/-5] 1s a non-unit, non-zero element and we can express it as
product of irreducibles in two ways:
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46 =2 .23
46 = (1+3/-5)1-3J-5)
But 2 is not an associate of 1+3+/=5 or 1-3+/=5. Hence Z[/-5] is not
a UFD.
Note: That is irreducible but not prime in Z[+/~5] and thus by using next theorem,
Z[\J-5] cannot be a UFD.

Theorem 1: In a UFD R an element is prime iff it is irreducible.
Proof : Leta € R be aprime element, then since R is an integral domain with unity,

a will be irreducible.

Conversely, let a € R be irreducible. Then a is non-zero, non-unit. Let a
| bc then bc = ak for some k.

Case 1: ) is a unit
then c=akb'=a (kb =a|c
Case 2: cis aunit then similarly, a | b.
Case 3: b, ¢ are non-units

If k1s aunit, then bc = ak

= a=b(ck"

Since a is irreducible, either b or ¢k ™! is a unit. But b is not a unit. Thus,

ck'is a unit.

But that implies c is a unit, which is again not true. Hence, £ is not a unit.
We can thus express

b =pp, ... Dy

C = q,q, . q,
k=rr,... r,

as product of irreducibles (by definition of UFD).
So bc = ak becomes

DDy oo Dy 9195 - g, = ar; ry ... r, = x (say)
Then x is an element having two representations as product of irreducible
elements. By definition of UFD each element in one representation is an associate
of some element in the other.

a is an associate of some p; or some ¢;
ua = p.or ua = ¢, for some unit u
i J
alp;oralg;
alborale  (p|b g0
a is prime element.

R



Theorem 2: If R is an integral domain with unity in which every non-zero, non-
unit element is a finite product of irreducible elements and every irreducible element
is prime, then R is a UFD.

Proof: To show that R is a UFD we need prove that if a € R be a non-zero, non-
unit element and
A=DpPy e D) = 41y e q,
where p, and q; are irreducible elements then m = n and each p;, is an
associate of some q;
We use induction on 7.
Letn=1,thena=pp, ... p, = q, and as q, is irreducible some p, is
a unit. But each p, being irreducible cannot be a unit. Thus m = 1.
. a=p,=q, or that the result is true for n = 1. Let it be true for n — 1.
Letnow a = pp, ... Dy =914y q,
Then PPy e Dy = 41(qy oo q,
=  q,|pp, - D,
Since g, is irreducible, it is prime (given)
= q, | p; for some i
Without loss of generality, we can take i =1
then =4, |py =P = 44
But p, irreducible = g, or u, is a unit.
As g, is not aunit (being irrducible), u, will be a unit and thus p,, g, are
associates.
Now (q,u)Dops5 - Py = 414y - q,
or (222929 Dy = 995 e q,
= PPy e Dy = Aoy e g, P,=up,Iisirreducible.
R.H.S. contains n — 1 elements and result being true for n — 1, we find
m—1l=n—-1= m=n.
Also, just as we showed that g, is an associate or p,, we can show that
q, 1s an associate of p,, by considering p,p, ..... p,, = 4,(q,q; ... q,
Thus, g, will be an associate of p,.
Hence R is a UFD.
Since it has already been proved that in a UFD every irreducible element
is prime, hence proved.

Theorem 3: An integral domain R with unity is a UFD if and only if every non-
zero, non-unit element is a finite product of irreducible elements and every
irreducible element is prime.

A second definition of a UFD and is used to solve various UFD based problems.
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Theorem 4: An integral domain R with unity is a UFD iff every non-zero, non-
unit element is finite product of primes.

Proof: If R is a UFD then every non-zero, non-unit element is a finite product of
irreducibles (by definition) and also every irreducible element is prime, hence the
result follows.

Conversely, let a € R be a non-zero, non-unit element. Thena =p p,
..... p,» Where p, are prime elements V i. Since R is an integral domain, prime
elements are irreducible and so each p. is irreducible. We now show that every
irreducible element of R is a prime element. Letx € R be any irreducible element.
Then x # 0, non-unit. Thus x = ¢4, ..... q,, where g, are prime. Suppose m >
1. Since x is irreducible, either g, or (¢,45 .. ¢,,) is a unit. But g, is prime and
thus cannot be a unit. So (¢,45 ..... ,,) 1s a unit which implies g, is a unit but
that is not true as g, is a prime. Hence m = 1 or that x is prime. By theorem
2 then, R is a UFD. Summing up the preceding results, we have proved.

Theorem 5: If R is an integral domain with unity then the following are equivalent:
(i) Ris a UFD.
(ii) Everynon-zero, non-unit element of R is a finite product of irreducible
elements and every irreducible element is prime.

(iii) Everynon-zero, non-unit element of R is finite product of prime elements.
Theorem 6: In a UFD R any two non-zero elements have a g.c.d.

Proof : Let a, b be any two non-zero elements of R.
Suppose one of them (say ) is a unit then aa™! = 1
b=(aaYo=ala'b)=alb
Also a =l.a=ala
Now if ¢ | a and ¢ | b then as it means c | a
we get a=g.c.d.(a, b).
Similarly, if » is aunit, b= g.c.d.(a, b).
Let now a and b be non-units. Since R is a UFD we can express

as product of irreducibles (note it is possible to express both a, b as product
of same irreducibles by suitably choosing the powers).

Let s.=min (a, B.)
weshow d= p' p3?...p¥ is g.c.d.(a, b)
Now a= (p p>2 . pi) (P 5T pl i)
— A P )
..... 3
=d|a



Similarly d | b

Let now c|a and c|b
Ifcisaunit, d=(cc)d = c|d
If ¢ is not a unit, we can write

n

_ " 7,

C= P Py ... Dy

Sincec |a, r,< a; forall i
c|lb, r;< B, foralli

= r,<min (o, B;) =s,; foralli

= cld
Hence d=g.c.d.(a,b)
which proves our result.

As seen earlier, if d, and d, are two g.c.d.s of a, b then d, and d, are
associates.

Theorem 7: Any two non-zero elements in a UFD have an l.c.m.
Theorem 8: A PID R is a UFD.

Proof: Let a € R be any non-zero, non-unit element. If a is irreducible then as
a = a, we can express a as finite product of irreducibles. If a is not irreducible
then, a is divisible by some irreducible element p,.
p,la= a=a,p, for some a,
If a, 1s irreducible you can express a as a product of finite number of
irreducible elements.
Suppose a, is not irreducible.

Then a, is a non-zero, non-unit element as a, =0 = a =0, which is not
so.Againifa, isaunitthenasa=a,p , wefind a and p, are associates and so
aisirreducible as p, is irreducible. But @, is not irreducible.

Thus, 3 an irreducible element p, such thatp, | a,

= a, = p,a, for some a,

If a, is irreducible, then

a=a\py = P4,

Hence, proved if a, is not irreducible, we continue like this.

Consider the ideals (a), (a)), (a,), .....

Then (@c(a) c(a,)c ...

as x € (a) = x=ar=par < (a,) etc.

Thus, we get an ascending chain of ideals, which must terminate after a finite
number of steps. Hence, you will get some irreducible element a, so that
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a=p\py ... P4,
1.e., a is expressed as a product of finite number of irreducible elements.

We need show now that if @ has more than two such representations then
the number of elements is same in both and each element in one representation
is an associate of an element in the other.

Let A= PPy e Dy = 919, - q,
and proceed exactly as in theorem 1 and our result is proved.

Theorem 9: If f(x) be a non-zero polynomial in R[x] where R is a UFD,
then f'(x) = df,(x) where f| is primitive and d = c( f").
Proof: Let f(x) =a, + ax + ... +ax"

andlet c(f)=d=gcd.(a,a, ... a,)

Then d|a, foralli

= a.= dul. for some u,

primitive.
Note: If 1 = g.c.d.(u,, u, ,....., u,)
then tlu Vi =td|du Vi
= td|a,V iand thus td | d
= t| 1 or that ¢ is a unit.

Theorem 10: (Gauss' Lemma): Let R be a UFD, then in R[x] the product of
two primitive polynomials is a primitive polynomial.
Proof:Let f(x)=a, +ax+ .. +a x"
gx)=b,+bx+ ... + b X"
be two primitive polynomials in R[x], then f (x) and g(x) are non-zero (by
definition). Thus
f(X)gx) =c, +cpx + czx2 + .. is also non-zero.
Let d=gcd(c,c,c,, .....)

We show d is a unit. Suppose it is not, then there exists an irreducible

element p such that, p|d.

[Recall that in a UFD, a non-unit element a can be expressed as a product
of irreducibles, a = p\p, ..... p, = p, | a]

Thusp |d=p|c, foralli (1)

Now, if p|a,forallithenp|g.cd.(a,a,,....,a,), whichis a unit, say,

Now,p | u = u =pk=1=p(ku™")
= pis a unit,



which is not true as p is irreducible.
p + a; for some i
Let i be such least +ve integer, then
pla,pla, ....pla_,p+a
Similarly 3 some integer j, such that,
p|bosp|b]s ----- 7p|b]_]ap*b]
Now ¢, L= (aoijJr a,b, i1 T +a bj+ )
+aibj+(ai+lbj—l+ ..... +al.+jbo)
Since p | ¢ i by (1) and also
p|(aobi+j+albi+j—l+ ''''' ta., bj+1)’
p|(al.+1bjfl+ ..... +ai+jb0)
we find p | al.bj, but p being irreducible in a UFD is prime

=plaorp]| bj, a contradiction. Hence the result.
Corollary: If R is a UFD and f'(x), g(x) € R[x], then
c(f(g)) =c(f) c(g) (upto units)
Since we can write f'(x) = df,(x), d = c(f)
gx)=d'g,(x), d" = c(g)
S x)gx) = dd’f,(x) g(x)
where f|, g, being primite give f,g, to be primitive
c( f,g,) =1 (or a unit)
c(fg)=dd" = c(f) c(g)

Converse of Gauss' Lemma is also true.

Theorem 11: If R is an integral domain with unity, then units of R and R[x] are
same.
Proof: Let a, be a unit of R.
Then 3 b, € R such that,a b, =1
Let S(x)=a, +0x + 0x*+ ...
g(x)=b,+ 0x + 0x%+ ...
then f(x)g(x) =ab, + 0x +0x> + ...
=1=1+0x+ 0% + ...
= f(x)is aunitin R[x]
L.e.,a, is aunitin R[x].
Conversely, let f (x) be any unit of R[x]
Then 3 g(x) € R[x] such that,
f)gx) =1E=1+0x+0x>+...)
= deg (fg) =deg 1
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= degf+degg=0
= deg f=degg=0
= fand g are constant polynomials

1e., f(x)=a,+ Ox + ox? + ... a, e R
g(x)2b0+0x+0x2+ ..... b, eR

Since jg=ab, =1

we find, a, =f(x)is a unit of R

Hence the result.

Example 1: Show that 2x + 1 is a unit in Z,[x].

Solution: Since 2x + 1) 2x+ 1) =0x*+Ox+ 1 =1
[4=0inZ,]
we find 2x + 1 is a unit in Z,[x].
Note: Notice 2x + 1 is a non constant polynomial and, therefore, does not belong

to Z,, and thus cannot be a unit in Z,,. But then Z,, is not an integral domain. In
fact, I and 3 are units of Z,,. [3 ® 3 =1].

Theorem 12: If R is an integral domain with unity and a is an irreducible element
of R then a is irreducible element of R[x].

Proof: Suppose a is not irreducible element of R[x] then 3 p(x), g(x) € R[x] such
that, a = p(x) g(x)
where p(x) and g(x) are non-units.
Now a=pq
= dega=degp +deggqg
= 0 =degp +deggqg
= degp=degg=0
= p, q are constant polynomials = p, g € R

Thus a = pq, p, ¢ € R and p, g are non-units [units of R and R[x] are
same], a contradiction to the fact that a is irreducible in R.

Hence the result follows.
Definition: Let R be an integral domain with unity. A polynomial f (x) € R[x] of

positive degree (i.e., of deg > 1) is said to be an irreducible polynomial over
R if it cannot be expressed as product of two polynomials of positive degree.

In other words, if whenever f(x) = g(x) A(x),
then degg=0 or degh=20

Apolynomial of positive degree, which is not irreducible is called reducible
over R.



Example 2: Show that @ where I = < x> — 5x + 6 > is not a field.
Solution: Since x*>—5x+ 6 = (x—2) (x—3) we find it is not irreducible polynomial
over Q.

Thus /=< x> — 5x + 6 >is not a maximal ideal of Q[x] and hence Qlx]

1
is not a field.

Example 3: Show that /(x) = x* — 9 is reducible in Z,,.

Solution: Since4 ®4®4=9inZ
actual division we find
X-9=@x-4) P +4x+5)inZ,.
Hence x° — 9 is reducible.

11> we find (x —4) is a factor of x> —9. By

Example 5: Show that the polynomial x> + x + 2 is irreducible over
F={0,1,2} mod 3. Use it to construct a field of 9 elements.

Solution: Let f(x)=x>+x+ 2. Ifit is reducible over F, we should be able to
find some a € F such that, f(a)=0.

But for no o € F, f (o) = 0. [For example, fora=1, 1>+ 1+2=1=
0 etc.]

Thus f'(x) is irreducible polynomial over F and as F'is a field, /' (x) is
irreducible element of F[x]. Hence < f(x) > is a maximal ideal of F[x] proving

F[x] .
o> is a field.

Any element of this field is of the type
p(x) + <f(x)>, where p(x) € F [x].
Since F[x] is a Euclidean domain,
for f(x), p(x) € F[x], 3 t(x), r(x) such that,
p(x) = f(x)t(x) + r(x), where either
r(x) = 0 or deg r(x) <deg f(x) =2
In either case r(x) is of the type ax+b, a,b e F
So px) — r(x) = f(x) t(x) € < f(x) >
ie., p—r € l, where [ = <f(x)>
=>p-r+il=1
ie., ptl=r+l=ax+b+<f(x)>
Fx]
< f(x)>

thereby that

Hence any member p + < f(x) > of
(x) >
Thus

is of the type ax + b+ <f

F[x]
< f(x)>

={ax+b+<f(x)>|a,beF}
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Sincea € F={0, 1,2} can be chosen in three ways and for each choice

of a, b can be selected in three ways, we find the number of elements of —os ;Exg .
X
willbe 3 %3 =9. Thus —J_ is the required field of nine elements.
< f(x)>

Eisenstein’s Criterion

Theorem 13: (Eisenstein’s criterion): Letf(x) =a, +a,x + a2x2 + ... +
a, X" be a polynomial with integer coefficients (i.e., /(x) € Z[x]). Suppose that
for some prime number p,

pla,pla,pla,..pla, ., prta,p ta,
then f(x) is irreducible polynomial over Q, the ring of rationals.
We first prove.
Lemma: If f(x) € Z/x] is primitive and f(x) is irreducible over Z then fis
irreducible over Q.

Proof: Suppose fis not irreducible over Q, then we can write f=gh, g, he
Q[x] withdeg g, degh >0

Then g(x) € Q[x] = g = é g,(x) where g,(x) € Z[x]
h(x) € Q[x] = h= %hl(x) where h,(x) € Z[x]

(For instance, if g(x) = %xz + %x + 1 € Q[x] then g(x) = % (4x% + 3x
+ 6), where then g,(x) = 4x* + 3x + 6 € Z[x]).
Again g,(x) € Z[x] = g, =dg,” whereg, " is primitive
h(x) € Z[x] = h,=d'h;”  whereh, isprimitive

1 ’ * *
Thus f=gh=Eddglh]

= off=ddgh
= c(apf) = c(dd’gl*h]*)
Since f is primitive polynomial in Z[x], its content is a unit in Z and as units
in Z are 1 or — 1 ¢(f) = *1. Similarly, c(g,"), c(h,”) can be £1.
Equating the contents on both sides, we get
+ofy =+ dd’
iLe., ofy ==+ dd’
and, hence, the equation of ' = a’a”gl*hl’k reduces to f = igl*h1
Now, deg (ig]*) = deg gl* = deg dgl* = deg g,

*

1
= deg ;gIZdegg>0



Similarly, deg(h,")>0.

Thus, we can write = igl*hl* where ﬂ:gl*,hl’k are polynomials in Z[x]
and have positive degree

= fisreducible over Z, a contradiction
hence, the lemma is proved.

We now come to the proof of the main theorem.

We show f is irreducible over Z.

Suppose it is not irreducible over Z, then 3 g, & € Z[x] such that, f=gh

with deg g, degh >0

Let gx)=b,+bx+ ... + by
h(x) =c, +cx+ ... +cx'
then g(x) h(x) = b c + (byc, + b c)x + ...
So f=gh
= a,tax+t ... =bc, +(bc,+bc)x+ ..
= a,=byc,

Now pla,=p|bc,=p|b,orp]c, asp isprime
Suppose p | b, thenp 4 ¢, as P’ t a,
[P | bo,p | €y :>p2 | boco :>p2 | ao]
Again, p cannot divide all of b, b, b,, ...... , b, asifitdoes then p divides
each term of the type

byco» bycy T bycys e
Le., p divides all of a, a, ...... ,a
Butp t a,
Let k be the smallest integer such that p +b,, k<s<n
So plbyplby..p|b_ i, ptb,
Now  a,=b,c,+ b, _,c; + ... +b,c,
p | a, by given condition as k< n
Also  pl (b, c; T b, o)+ ... + bycy)
= plbe,=plb.orplc,
both leading to a contradiction. Hence f(x) is irreducible over Z.
If f(x) is primitive, it will be irreducible over Q by lemma. If /(x) is not
primitive we can write /= d f, where f| is primitive and d = c¢( /)
Then firreducible over Z = d f, is irreducible over Z
= f, isirreducible over Z
= f, isirreducible over Q (as f; is primitive)
= df, isirreducible over Q
= fisirreducible over Q
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Hence, the theorem is proved.

Note: Since f (x) = g)h(x) < f(x+1)=gx+ 1) h(x+ 1)
We find £ (x) will be reducible (irreducible) iff / (x + 1) is reducible
(irreducible). In fact one can take any integer in place of 1.

The polynomial /' (x) =x’ —x + 1 is irreducible over Q, as suppose it is reducible
then it has a root in Q.

Let = [m, n integers, n # 0, (m, n) = 1] be a root.
n

m> = n? (m — n)
| m*=n|m’.1=n|las(m n)=1
n==l

U i ud

m
n

orthat m®—m+1=0
=m@m -1)=-1
= m | 1 or that m = £1

= % ==+1 which gives

1 — 1+ 1=0, which is not possible.
Hence, x* — x + 1 is not reducible over Q.

13.4 RELATED PROBLEMS

Problems 1: For any prime p show that the
poly, x*!+x2+... +x* +x + 1 is irreducible over Q.
Let fix) =x!'+x2+2 .. +x*+x+1

p-1

= (sum of'a GP)
x—1
Now
1? -1
f(x+1) (();-'-_1))_1 =x”+p"clxpl+



+"cpxp'2 +o4P e, 1

X

-1
x4+l ex? 44l e, x

x
b-1 -2
=x" +ex’ +o4Pe

Since p is a prime no. p/l’cp forall
1<r<p-I1

p 2 4+ p
Also c,,6 or ptre

Hence by eisentein criterian f(x+1)

Problems 2: The polynomial x> —4x + 2 is irreducible over Q, as if we take p =
2,thenp [4,p|2,p41,p’+2.
Again, consider the polynomial x* + 1 = f(x).

Since there is no prime p which divides 1, we cannot apply the Eisenstein's
criterion to f(x).

Consider f(x + 1) = (x + 1)* + 1
=x2+2x+2(a0=2,a1=2,a2= 1)
Take p =2, thenp | 2, p+1, p2,|f2
Hence f(x + 1) is irreducible.
= f(x) is irreducible (by using the preceding remarks)
Again, let f)=x+x*—2x—1
Since there is no prime that divides 1, we cannot apply the criterion here.
Consider f(x+ =@+ 1P’ +(x+1*-2x+1)-1
=X +42+3x -1
We have the same situation. Let us consider
fe-D=@x-1)P+@x-1P2-2x-1)-1
=X -2 -x-1
Again it is not possible to apply the criterion.
Consider f(x +2)=x>+ x> + 14x + 7
thenp =7 will do as here a,=7,a, =14, a,=7,a;=1and 7|7,7| 14,7
17, 741, P47
Thus, by criterion f(x + 2) and therefore, f(x) is irreducible.
Note: One may note that Eisenstein's criterion is not necessary for irreducibility
of'a polynomial as you have seen there does not exist any prime p such that p |

1 (although the polynomial could be irreducible). x* —x + 1 is irreducible over
Q, but Eisenstein's criterion is not applicable.
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Check Your Progress

1. Is Fx] a Euclidean domain when F'is a field?
2. Is Z[x] a PID?
3. Whatis an irreducible polynomial?

13.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Yes F[x]isaEuclidean domain when F is a field.
2. No, Z[x] isnota PID as Z is not a field.

3. Let R be an integral domain with unity. A polynomial f{x} € R[x]ofpositive
degree is said to be an irreducible polynomial over R if it cannot be expressed
as product of two polynomials of positive degree.

13.6 SUMMARY

e Let F'bearational field. If ay;, a1, ..., a1, ag F, then any expression
of the form, a,x"+ay,, 1xM~!+....+ajx+aqis called a polynomial
over F in the indeterminate x with coefficients a;,, a;,_1, . .., a(p. The

set of all polynomials with coefficients in F'is denoted by F[x].

e Let R be an integral domain with unity then R is called a unique factorization
domain (UFD) if (i) every non-zero, non-unit element a of R can be
expressed as a product of finite number of irreducible elements of R and (i7)
ifa=pp .. P a=qq ... q where p; and qj are irreducible in R

b

then m = 11 and each pjlsan associate of some qj-
e Let R beanintegral domain with unity. A polynomial f{x} € R[x]ofpositive
degree is said to be an irreducible polynomial over R if it cannot be expressed

as product of two polynomials of positive degree. A polynomial of positive
degree, which is not irreducible is called reducible over R.

13.7 KEY WORDS

e Polynomial: an expression of more than two algebraic terms, especially
the sum of several terms that contain different powers of the same variable(s).

o Degree: The degree of a polynomial is the highest degree of its monomials
with non-zero coefficients.

e Zero polynomial: The zero polynomial is the additive identity of the additive



group of polynomials. The degree of the zero polynomial is undefined.

o Rational field: The field of rationals is the set of rational numbers, which
forma field. This field is commonly denoted Q.

¢ Ring: Aring is one of the fundamental algebraic structures used in abstract
algebra. It consists of a set equipped with two binary operations that
generalize the arithmetic operations of addition and multiplication.

13.8 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. Show that an integral domain g with unity is a field iff 2 [x] is a PID.
2. Write a short note on polynomials over the rational field.
3. Explain in briefly the concept of UFD?
Long Answer Questions
1. Show that if F'is a field, then F[x] is a Euclidean ring.

2. Show thatif is an integral domain with unity, then units of R and are same.

3. Explain Eisenstein’s criterion.

13.9 FURTHER READINGS

Hungerford, Thomas W. 2003. A/gebra. Berlin: Springer Science & Business
Media.

Khanna, VK, S.K Bhamri. 4 Course in Abstract Algebra. NOIDA: Vikas
Publishing House.

Singh, Surjeet, Qazi Zameeruddin. 2005. Modern Algebra. NOIDA: Vikas
Publishing House.
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UNIT 14 POLYNOMIAL RINGS
OVER COMMUTATIVE
RINGS

Structure

14.0 Introduction

14.1 Objectives

14.2 Polynomial Rings Over Commutative Rings
14.3 Supplementary Problems

14.4 Answers to Check Your Progress Questions
14.5 Summary

14.6 Key Words

14.7 Self Assessment Questions and Exercises
14.8 Further Readings

14.0 INTRODUCTION

In this unit, you will know about polynomial rings over the commutative rings.
Polynomial rings occur in many parts of mathematics, and the study of their
properties was among the main motivations for the development of commutative
algebra and ring theory.

14.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Discuss polynomial rings over commutative rings

e Solverelated problems

14.2 POLYNOMIAL RINGS OVER COMMUTATIVE
RINGS

Theorem 1: Let R[x] be the ring of polynomials over a ring R then
(1) Riscommutative iff R[x]is commutative.
(@) R has unity iff R[x] has unity.
Proof: (i) If R[x] is commutative then any subring of R[x] is commutative and as
R is isomprphic to a subring of R[x], R will be commutative.



Conversely, if R is commutative
and fx) =a,+ax+ a2x2 +..+tax"
g(x) =b, +bx+bx*+ .. +bx"

be two members of R[x], then by definition of product

f(x)gx) =apb, + (ab, +ab)x+ ..
=bsa,+ (ba,+ ba)x+ ..
= 8(x) f (x).

(1) If R has unity 1 then the polynomial

e(x) =1+ 0x+ 0x? + ... is unity of R[x] as £ (x)e(x) will be f (x) for any
polynomial f'(x).

Conversely, let R[x] have unity.

Defineamap  6: R[x] — R, such that,

Af(x) =0a,+ax+. +ax")=a,
then fis an onto homomorphism.

Thus, R is a homomorphic image of R[x] and hence has unity, as
homomorphic image of a ring with unity is a ring with unity. It fact, &(e(x)) will
be unity of R where e(x) is unity of R[x].

Theorem 2: Let R[x] be the ring of polynomial of a ring R and suppose
fX)=a,+tax+..+ax"
gx)=b,+bx+ ... +bx"
are two non-zero polynomials of degree m and n respectively, then
(@) If f(x) + g(x) # 0, deg(f (x) + g(x)) < max(m, n)
(i) If £ (x) g(x) # 0, deg (f(x) g(x)) <m + n
(7ii) If R is an integral domain, deg ( f(x) g(x))=m +n
(iv) Risanintegral domain iff R[x] is an integral domain.
(v) If Fis a field, F[x] is not a field.
Proof: (i) By definition,

fx) +gx)=(a,+b)+ (a, +b)x+ (a,+b)x* + ..+ (a,+ b))
where f = max (m, n).

Now a +b, =0forallk>tasa, =0,b,=0

thus degree of /' (x) + g(x) is less than or equal to # = max (m, n). Notice it is
possible to have deg (f(x) + g(x)) <max (m, n). Consider the ring Z of integers.

Let  f(x)=1+2x—2x
g(x) =2 + 3x + 27
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be two members of Z[x],
then  f(x) +g(x)=(1+2)+ 2x +3x) + (- 2x* + 2x?)
=3+ 5x
Thus deg (f (x) + g(x)) = 1 whereas deg f (x) = 2 = deg g(x)
(i) Letf (x) g(x) =c,+cx + 02x2 + ..

where ¢, = (@b, ta, b, + .. +apb).

Here ¢, .,~ab, . *tab, . | t+.. tab ... +a,. b,
=a,b,

as all other terms would be zero. (a,, . . =0, b, = 0 for all i, j > 0).

Again, ¢, ., =0forallt>0and

thus deg(f'(x) g(x)) <m + n (a,b, can be zero even ifa, # 0 b, # 0)
We show that it is possible that deg (f'(x) g(x)) <m + n.
Considerthering R = {0, 1, 2, 3, 4, 5} modulo 6
Take fx) =1+2x°
g(x) =2+ x+3x°
two polynomials in R[x] of degree 3 and 2, respectively.
Here f(x)gx) =2 +x+ 3%+ 4 + 2x*
which is of degree 4< 5.
Notice, here R is not an integral domain.

(zii) If R 1s an integral domain thenas a, # 0, b, # 0, therefore, a b +#
0 and hence ¢, , , = a, b, # 0 showing that deg (f(x)g(x)) = m + n.
(iv) If R[x] is an integral domain then since R is isomorphic to a subring of

R[x], R will also be an integral domain.
Conversely, suppose R is an integral domain.
Let f'(x), g(x) be any two non-zero members of R[x] such that,
S (x)glx) =0
where f&x)=a,+ax+ ..+ax"
gx)=>b,+bx+ .. +bx"
Now both f'(x) and g(x) cannot be constant polynomials as then a = 0,
b,#0 (soc,=ab, #0)
fx)gx) # 0
Since at least one of f'(x), g(x) is non constant polynomial, its degree is
> 1.

R being an integral domain
deg (f(x)g(x)) = deg f(x) + deg g(x) = 1



which is a contradiction as it implies then ¢, # 0 for some £> 0

whereas  f(x)g(x) = 0.

Hence f(x)g(x)=0=f(x)=0o0rgx)=0

= R[x]isan integral domain.

(v) Let F'be a field, then since F'is commutative, has unity, by previous
results we find F[x] will be a commutative ring with unity. In fact F'being an
integral domain, F]x] will also be an integral domain. We show, not all non-zero
elements of x| have multiplicative inverse. Consider the non-zero polynomial

F@) =0+ 1x +0x* +0x° + ... (= a0+a1x+a2x2+ ...... )

Suppose  g(x) =b,+bx +b2)c2 + ... 1s its multiplicative inverse

then f(x)g(x) =c, +cx + czx2 + ..

shouldbeunity e(x) =1 + Ox + 0x + ... of Fx]

= c,=1,¢c,=0foralli>0

where c,=ab =0.b =0=1.

Hence no g(x) can be multiplicative inverse of f (x) =x.

Showing that F|x] is not a field.

If R is aring, we get R[x] the corresponding ring of polynomials. Since
R[x] is aring, we can similarly get R[x, y] the corresponding ring of polynomials
of R[x] and the process can be extended. If F'is a field then F[x] is a ring with
unity and similarly FTx, y] will be a ring with unity. We shall use it a little later
when we come to factorisation domains.

Example 1: Let R and S be two isomorphic rings. Show that R[x] and S[x] are
also isomorphic.

Solution: Let ¢ : R — Sbe the given isomorphism.
Define a mapping
f: R[x] = S[x], such that,
fla, +ax+..+ax")=da,) + da)x + ... + ¢a,)x"
It should now be a routine exercise for the reader to show that this f is
an isomorphism.

Theorem 3: If F'is a field, then F[x] is a Euclidean domain.

Proof: We have seen that F[x] is an integral domain with unity.
For any f'(x) € Flx], f(x) # 0, define
d(f (x)) =deg f(x) which is non — ve integer
Since, for anyf (x), g(x) € F[x], f(x), g(x) # 0
deg (f'(x) g(x)) = degf(x) + deg g(x)
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weget deg (f(x)) < deg (f(x)g(x)), as deg (g(x)) = 0
d(f(x)) <d(f(x)gx))
Lastly, we show for any non-zero f'(x), g(x) in F[x], 3 #(x) and (x) in F[x]
such that
S (x) = 10)gx) + r(x)
where either 7(x) is zero or deg r(x) < deg g(x)
If deg f(x) < deg g(x) then f'(x) = 0. g(x) + f(x) gives the result.

Assume now the result is true for all (non-zero) polynomials in Fx] of deg.
less than deg f'(x).

Let f&x) =ay,+ta +..+ax,
gx) =b,+bx+..+bx
Suppose deg f(x) > deg g(x)
Define  f,(x) =f(x)— a,b," x" " g(x) then coefficient of x” in £, (x)
is a —ab,'. b =a —a =0
either f,(x) = 0 (zero polynomial) or deg f,(x) <m
If fi(x) =0, then
0 =f(x) = a,b, ¥" " gx)
gives f(x) = a,b,'x"7" g(x) + 0
So by taking #(x) = a,b,' X" " and r(x) = 0 we get the required result.
Supposef,(x) # 0,
then deg f,(x) <m
ie, deg f(x) <degf(x)
By induction hypothesis
f1(0) = 1,(x) glx) + r(x)
where either 7(x)= 0 or deg r(x) < deg g(x)
f() = a,b X" g(x) = 1 (x) glx) + 7(x)
or f) = [ayby! X" 7"+ 1, (x)] glx) +r(x)
= H(x)g(x) + r(x)
where either 7(x)= 0 or deg r(x) < deg g(x)
and hence FJ[x] is a Euclidean domain (and also, therefore, a PID).
Notes:
1. Thus Q[x] is a Euclidean domain which is not a field.
2. One can show that the above defined #(x) and r(x) are unique.
Suppose f(x) = #(x) g(x) + r(x) where either 7(x) =0 or degr<degg



and f(x) =7(x) g(x) + 7'(x) where either 7(x) =0ordeg+ <degg
then  #(x) glx) + r(x) = 1'(x) g(x) + rx)
= gt—t)y=r—r (1)
Suppose #(x) # #'(x) then ¢t — ¢’ # 0 and thus has degree > 0
(1) = deg(g(t—1)) =deg (' —r)

= degg+deg (t—1t')=deg (+' — 1) ..(2)
Also since g(¢—¢') has positive degree (= 1), # — r cannot be zero, otherwise

g(t—1t") would be a constant polynomial, so its degree cannot be > n.
r' — r cannot be zero = both » and ' cannot be zero together.
Now L.H.S. of (2) is greater than or equal to deg g
whereas R.H.S. of (2) is < max (deg 7', deg r) < deg g
as if both 7, 7" are non-zero then degr<degg
deg ' <degg

= max (degr, degr') <degg

If one of r, 7' is zero, the other has deg less than deg g. In any case R.H.S.
<degg,
which is a contradiction.
Thus t—t'=0=t=1¢
() = r=r.

Hence the uniqueness is established.
If Fis a field then F[x] being a Euclidean domain will be a PID.

Theorem 4: If F'is a field, every ideal in F[x] is principal.
Example 2: Let R = {0, 1) mod 2, then R[x] is an infinite integral domain.
If f(x) € R[x] be any member and if,
S)=a,tax+ .. +a,x" then we have
2f(0)=/1) + f(x)

=(a,®a)*(a Da)x+ .. +(a, ®a,)x"

=0+0x+0x+ ...

= O(x), zero of R[x]

Thus 2 f(x)=0V f'e R|x], showing that R[x] is of finite characteristic (although

it is infinite). Note also that ch R = ch R[x].

Example 3: Let R be a commutative ring with unity. Let 4 be an ideal of R. Show
that

? ~R [x].

[x] 4

Hence or otherwise prove or disprove

A is prime ideal of R = A[x] is prime ideal of R[x].
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Solution: Define a mapping
0: R[x] > %[x] such that,

0(f(x)=Oa,+ax+ ... + ax")
=(a,+A) +(a, +A)x+ .. + (a, + A"
then Gis clearly well defined.
If fx)=a, +ax+ a2x2 + ...
gx)=b, +bx+ b+ ..
SX)gx)=c, tcx + c2x2 + ...
then & (f(x) + g(x))= O((a, + b)) + (a, + b)) x + ....)
=[(a,+b)+A] +[(a, +b)+A] x+ ...
=(a,+A)+ b, +A)+(a +A)x+ b +A4)x+ ...
=((a,+A)+(a, +Ax+...)+ (b, +A)+ (b, + A)x

= &/ (x) + Agx)
Af(x)g(x)) = 0(c, + cx + czx2 +....)
= (c, T A) +(c,+A)x+ ...
(ab,+A)+ (a,b, +ab, +Ax+ ...
(a,+A) (b, +A4)+[(ab,+A)+(ab, +Ax+ ...
(a,+A) (b, +A4)+
[(a, +4) (b, +A)+(a,+A) (b, + A)]x + .....
Also 0(f(x)) Ag(x)) =[(a, + A) +(a; + A)x + ... ][(b, +4) + .....]
=(a,+A) (b, +A)+[(a, +A) (b, +A)+ (a,+A) (b, +A]x+ .....
= @isahomorphism.

That s onto is evident from the definition of #and hence by fundamental
theorem,

R[x R
Kir]ﬁig[x]'

Now fx)eKer0<= 0(f(x))=0+A)+(O0+A4)x+ ...
& (@ay+A4)+(a, +A)x+ .. =0+A)+O0+A4)x+...
= a,+A4=4A foralli
& a, €A for all i
= f(x) € A[x]

Hence Mgﬁ[x]

Alx] A

Finally, let 4 be a prime ideal of R.



Then % is an integral domain.

= S [x] is an integral domain

= % 1s an integral domal, because of the isomorphism
X

= A[x] is a prime ideal of R[x].
Note: It is clear if 4 is an ideal of a ring R then A[x] is an ideal of R[x]
(Kernels are ideals).

Theorem 5: Let R be a commutative ring with unity such that R[x] is a PID, then
Risafield.

Rx]
<x>

Proof: By previous theorem, =R.

We claim < x > is a maximal ideal of R[x].
Suppose [ is any ideal such that <x > c I < R[x].
Since R[x] is a PID, /= < f'(x) > for some f (x) =a, + a;x + ..... +ax
Now xe<x>cl=<f(x)>
= x = f(x)g(x) for some g(x) € R[x]
which implies either f(x) =x, g(x)=1. (unity of R[x])

or fx)=ox, gx)=a, a € R
or f =1, gx)=x
(Second case being conditional to the existence of ')
If f(x) =x, I=<f(x)> =>[=<x>
if f(x) = ax, I=<f(x)> = [=<uwx>=<x>
if fx) =1, I=<f(x)> = [=<1>=R[x]
Hence, < x > is a maximal ideal.
fixi is a field.

Hence, R is a field.

Example 4: Let R be a commutative ring with unity and < x > be a prime ideal
of R[x]. Show that R must be an integral domain.
Solution: Let a, b € R be such that ab =0
Then the polynomials
O+ 1x+0x*+ ...)+ (a+0x+0x*+...)and
0+ Ix + 0x* + ....) + (b + Ox + 0x* + .....) belong to R[x]
= x+ta,x+b e R[x]
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= (x ta)(x+b) e R[x]
= x>+ x(a+b)+ab € R[x]
Since ab = 0, x> +x(a+b)=x[x+a+b] e <x>
thus (x +a) (x +b) € <x>
= (x+a)e<x>or (x+b) e <x>as<x>is prime ideal
Now (x +a) € <x> = x +a=xf(x) for some f(x) € R[x]
=x(aytax+..)
=a=0
Similarly if (x + ) € <x> then b=0.
Hence, R isanintegral domain.
Example 5: Show that the ideal
A = {xf(x) + 2g(x) | f (x), g(x) € Z[x]} of Z[x] is not a principal ideal.
Solution: Suppose 4 is a principal ideal generated by k(x), k(x) € Z[x]
Since x =x(1 +0x + 0x*> + ...) +2 (0 + 0x* + .....) € 4 = <k(x)>

x = k(x) h(x)
Also 2 € <k(x)> = 2 = k(x)t(x)
(1)
Thus xk(x)t(x) = 2k(x)h(x)

= 2h(x) = xt(x)
= each coefficient of #(x) is an even integer.
1e., t(x) =2r(x) for some r(x) € Z[x]
= 2 = 2k(x)r(x)
= r(x)k(x) =1
= 1 e <kx)>
= <k(x)>=Z|x] [ideal with unity]
= A=17Z[x]
which is not true as 4 is proper ideal of Z[x].
Note: Example 5 shows us that Z[x] is not a PID.

Example 6: Show that the above ideal 4 is maximal ideal in Z[x].

Solution: Let / be an ideal such that 4 — I < Z][x].
Since A#1, 3 h(x) € I, such that, h(x) ¢ A.
Let h(x) = b, +bx+bx*+ ... +bx"
then b is odd as if b is even then /(x) € A.
h(x) = 2k+bx+bx*+ ...+b x"=g(x)+xf(x) type



Thus h(x) = (2a + 1) + blx + b2x2 + ... + bmxm Polynomial Rings Over

Commutative Rings

h(x) = gkx)+1

= 1 = h(x) — g(x)
= l el ashix)el,gxyedcl
= 1 =7]x]

= Aismaximal.

Note: We also use the notation (2, x) for the ideal A.

14.3 SUPPLEMENTARY PROBLEMS

Zy(x)

1

Problems 1. Show that

Z;(x)

Ans.(x+2)+le3T

where /=<x?+x + [>is not a integral domain.

and [(x +2)+I[PP=@x+2)P*+I[=*+1.x+t1)+1

=[=zero of@

(x)

. V4
but (x +2) + 7 is not a zero of 3T

is not an Integral Domain.

Zy(x)
1

Problems 2. Show that f{x) = 8x*+ 6x + 1 € z(x) is primitive where as g(x) ==
8x* + 6x +2 € z(x) is not primitive.

Ans. Consider c(f)=gcd (8,6,1)=1
c(f)=gcd. (8,6,2)=2

Also g(x)=2(4x> + 3x + 1) = 2g(x)
where c(g)=1
Here g(x) =2g(x) where g(x) is primitive

Problems 3. Show that Q(Ix)

A. Since x?—5x +6=(x—2z) (x—3), we find it is not ... irreducible polynomial
over Q.

where [ = <x?— 5x + 6> is not a field.

Thus /=<x?—5x + 6> is not a maximal ideal of Q(x) and hence
nota field.
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Problems 4. Show that z (x) is a UFD.
Sol. Since 5 is prime, z, is a field

UFO =z isa UFD

Diff. =z (x) isa UFD

Problems 5. z I:\/ =5 ] is in Integral domain which is not a UFD.

Ans. 46 € z| /5 :I is anon unit, non zero element. We can express it as product

of two irreducible in two ways.
46 =2.23

46 = (1+3+/-5)(1-~/-5)

But 2 is not an associate of 14 3+/—5 or 1 —3+/—=5. Hence z(F5) is not

UFD.
Problems 6. Show that 2x + 1 is a unit in z,(x)

Sol. Since 2x+ 1)2x+1)=0x> +O0x +1=1
[4=0inz,]

We find 2x + 1 is a unit in z,(x)

Problems 7. Show that the polynomial f{x) = x> —2x — 15 is both primitive as

well as irreducible over z.

Ans. Consider
c(f)=gcd (1,2,-15)=1

also x> —2x—15=(x—-5)(x+3)
However, the polynomial x?—2 is primitive as well as irreducible over z.

Check Your Progress

1. What is acommutative ring?
2. Whatis a polynomial ring?

14.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A commutative ring is a ring in which the multiplication operation is

commutative.
2. A polynomial ring formed from the set of polynomials in one or more

indeterminates with coefficients in another ring, often a field.

Self-Instructional



14.5 SUMMARY

e Let R[x] be the ring of polynomials over a ring R then R is commutative iff
R[x] is commutative and R has unity iff R[x] has unity.

e Let R be acommutative ring with unity such that R[x]isa PID, then Ris a
field.

14.6 KEY WORDS

¢ Polynomial: an expression of more than two algebraic terms, especially
the sum of several terms that contain different powers of the same variable(s).

e Degree: The degree of a polynomial is the highest degree of its monomials
with non-zero coefficients.

e Zero polynomial: The zero polynomial is the additive identity of the additive
group of polynomials. The degree of the zero polynomial is undefined.

¢ Ring: Aring is one of the fundamental algebraic structures used in abstract
algebra. It consists of a set equipped with two binary operations that
generalize the arithmetic operations of addition and multiplication.

e Commutative ring: A commutative ring is a ring in which the multiplication
operation is commutative.

¢ Polynomial ring: A polynomial ring formed from the set of polynomials in
one or more indeterminates with coefficients in another ring, often a field.

14.7 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

1. Write a short note on polynomial rings.

2. Show that if F'is a field, every ideal in F]x] is principal.

Long Answer Questions

1. If R is acommutative ring, show that ch R[x] is same as ch R.

2. Let R be acommutative ring with unity and < x > be a prime ideal of R[x].
Show that R must be an integral domain.
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